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ABSTRACT 

In the Sections 1 and 2 of the paper the theory and a quantitative analysis of ambipolar 
thermodiffusion are presented. Formulas are derived describing the internal and total current 
densities and the excess carrier density distribution in a semiconductor in the presence of a 
temperature gradient perpendicular to the surface of the semiconductor plate. The Sections 3 
and 4 describe the interaction of thermodiffusion current and perpendicular magnetic field 
resulting with emf and voltage between sample electrodes. We have called this phenomenon 
as thermomagnetoelectric effect (TME). The theory gives the formula that defines the TME 
voltage, which depends on the carrier lifetime and the surface recombination velocity of the 
semiconductor sample. 

 

1. Introduction 

The longest known electrical phenomenon 
associated with a temperature gradient is the Seebeck 
thermoelectric effect, i.e. the flow of electric current 
due to this gradient. 

A temperature gradient may also induce an 
electrically neutral flow of holes and electrons due to 
the Soret thermodiffusion. This effect was described 
by Price and named the ambipolar diffusion [1]. An 
analysis of the transport equations has shown that the 
Price theory is strictly correct where the volume 
and/or surface recombination are sufficiently 
extensive, since the electrically neutral flux of hole-
electron pairs results in the carrier concentration in 
the individual regions of the semiconductor sample 
being increased or decreased. This was discussed in 
[2] where we also draw the reader’s attention to the 
split of the Fermi level and to the measuring expe-
rimental possibilities that result from this fact. This 
problem has been discussed also by Gurevich et al. in 
[3] and [4]. 

The magnetic field acting in an irradiated plate 
placed between the poles of a magnet splits the 
electron and hole fluxes, as a result of which electric 
charges and a voltage appear on the sample walls 

parallel to the fluxes and to the magnetic field. This 
phenomenon is widely known as the photoelectro-
magnetic effect. 

The magnetic field will act in an analogous 
way also when the electron-hole pair flux is 
induced by the Price ambipolar thermodiffusion. 
The present paper describes and analyses this 
effect, which we term as the thermomagnetoelec-
tric effect (TME). 

The first part of the paper contains the derivation 
of the formula that defines the internal current 
density J*. This current defines quantitatively the 
ambipolar thermodiffusion in the absence of the 
magnetic field, under the assumption that the values 
of the lifetime and the velocities of surface re-
combination are finite. The paper also describes the 
distribution of the excess carrier concentration in a 
cuboidal semiconductor plate within which a tem- 
perature gradient perpendicular to the plate surface 
occurs.  

The second part of the paper gives the derivation 
of the formulae that describe the action of a magnetic 
field on the thermodiffusion carrier flux. Formulae 
are given for the current densities and the distribution 
of the electric field in a semiconductor plate, under 
the assumption that the temperature gradient is 
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perpendicular to its surface whereas the magnetic 
field acts is parallel to it. 

This has led us to a quantitative description of the 
thermomagnetoelectric effect. For the sake of ex-
periments, we also give the formula for the voltage 
induced by this effect. 

2. Internal and total current densities and 
the distribution of excess carriers in 
a semiconductor plate with the temperature 
gradient acting within it 

Figure 1 shows a cross-section of an infinite plate 
of thickness w made of inhomogeneous semi-
conductor. The axis z of the co-ordinate system is 
perpendicular to the free surfaces of the plate. We 
shall consider the case in which the absolute 
temperature T only depends on the co-ordinate z, 
which means that grad T is perpendicular to the 
sample surface and that all the other parameters that 
describe the state of the material are also dependent 
on z alone. 

Fig. 1. Currents and temperature gradient directions in an 
infinite homogeneous semiconductor plate.  
 

According to Ref. [5], the densities of the hole 
current Jp and the electron current Jn in this case are 
given by: 
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where σn, σp are the hole and electron conductivities, 
kB is the Boltzmann constant, μ

Equations (1) and (2) have a general character and 
do not reflect the role played by the excess carriers, 
although the quantities n and p include both the 
equilibrium concentrations no, po and the con-
centration of excess carriers. 

To demonstrate how the excess carrier con-
centration affects the phenomena that occur in the 
semiconductor, we should use the quasi-neutrality 
principle and express the concentrations in the forms: 
 

                             n = p + N,                               (3) 
 

                             no = po + N                             (4) 
 
which can be referred to both complete con-
centrations n and p, and the equilibrium con-
centrations no, po. It is also assumed that the 
concentration N is equal to the difference between the 
concentrations of ionised donors and ionised 
acceptors, ND

+ − NA
−, and does not depend on the 

excess concentrations or on the temperature. 
Subtracting Eqs. (3) and (4), we obtain 

 
 n − no = p − po = Δp             (5) 

and hence 
n = no +Δp, p = po + Δp.             (6) 

Let the current densities be expressed as 
∗+= JJJ

σ
σ p

p ,    

∗−= JJJ
σ
σ n
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where the density of the current which we will denote 
with the term “internal current” is 

      np JJJ
σ
σ

σ
σ pn −=∗ .              (8) 

The current components, which are fractions of the 
total current J, are expressed in a simple form; what is to 
be determined is the internal current J* that is involved 
in both the currents but with the opposite signs.  

When the total current J = 0, the hole and electron 
currents cancel each other, but nevertheless they 
carry hole and electrons fluxes that flow in the same 
directions. This results from the fact that Jp = J* and 
Jn = −J* on the assumption of zero total current. This 
motivates the term “internal current”. 

If a temperature gradient occurs, these currents 
and the fluxes they carry play a particular role, which 
will be discussed in this Section. The internal current 
J* is the sum of the three components 

B p, μn are the hole and 
electron mobilities, respectively, εp, εn are coeffi-
cients dependent on the current carrier scattering 
model, NV, NC are the state densities of the basic and 
conductance bands, q is the electron charge, V is the 
electric potential, and ni is the intrinsic concentration 
at a given temperature. 

 
J * = Jth + J1
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Jth is the basic component of the electrothermal 
current (this is why we use the index ‘th’) It is 
consistent with the Price equation for ambipolar 
thermodiffusion [1] in the derivation of which 
Price took no account of excess carriers, an 
assumption which would be justified if a very strong 
bulk and/or surface recombination took place in the 
semiconductor sample. The aim of the present 
Section is to include the effect of a finite value re-
combination.  

Let us express J1* in the form 
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and J2
* in the form 
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Equations (10), (11) and (12) are derived in 
Appendix 1, which also gives the definitions of the 
ambipolar diffusion coefficient D and the ambipolar 
mobility μ. 

Introducing the quantity (with dimension ms−1) 
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we can write, using Eqs. (9), (10), (11) and (12), that 
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Δ
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This equation is one of the transport equations. 
The second equation is the continuity equation. In a 
stationary case, assuming the simplest recombination 
model and taking into account that no excess carrier 
generation sources are present, we have  

       ,
τ

p
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where τ is the lifetime of the excess carriers. 
Since no electrodes are installed on the sample 

surfaces, we should take J = 0. Then using Eq. (7) we 
obtain 

            
τ
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The second continuity equation is derived from 
Eqs. (13) and (14) and has the form: 
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The last two equations constitute a system of 
differential transport equations with the two unknown 
functions J*(z) and Δp(z). Both equations are linear 
equations with variable coefficient Vth and Jth 
according to Eqs. (10) and (13). Hence the solutions 

should be found by numerical methods. It is, 
however, advisable that the solutions should be 
sought with the approximately constant values of Vth 
and Jth assumed a priori. 

In order to obtain an equation with the single 
unknown J*, we use Eq. (16) for determining the 
quantities 
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Then substituting these quantities into Eq. (14) we 
obtain 
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Now denoting 
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and using this notation in Eq. (19) we obtain 
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The solution of this equation is the function 
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where A and B are arbitrary constants, whereas L1 
and L2 are given by 
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where Lu and LD are given by (20).  
The derivative of J* with respect to z is 

     21

21

L
z

L
z

e
L
Be

L
A

dz
dJ −∗

−=     (24) 

since, by virtue of the initial assumption, Jth = const.  
The constants A and B should be determined from 

the boundary conditions 
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where −w/2 and w/2 are the co-ordinates of the 
bottom and top surfaces of the sample, respectively, 
and S1, S2 are the surface recombination velocities on 
the bottom and top sample surfaces, respectively. 

Since we seek J*, we substitute Δp as defined by 
Eq. (18) and obtain 

2
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Then, inserting the values of J*(±w/2) and 
(dJ*/dz)z = ± w/2 as given by Eqs. (22) and (25) into Eq. 
(26), we obtain 
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Ordering these equations we obtain 
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Hence we can determine the constants A and B as 
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Substituting these into Eq. (22) gives 
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Now by differentiating J*(z) of Eq. (35) and using 
the first formula in (18) we obtain the equation for 
the distribution Δp(z) in the form 
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For further calculations we need a formula that 

defines the average value of the current density, J*av, 
which can be obtained from Eq. (35) to be 
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Let us consider the two cases: 
1) If the carrier lifetime τ is great enough for 

the inequality  
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The bracketed members can further be simplified 
by leaving, in the brackets of Eqs. (32) and (33), only 
the members that contain τ. If this is done, we have 
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where Eqs. (23) are used. 
It follows from these equations that 
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Hence, if the condition (38) is fulfilled, we obtain 
J*av from equation (40) as 
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2) If S1 = S2 = 0, we have 
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Substituting these results in Eq. (37) we obtain 
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If, in addition, min (w/L1, w/L2) >> 1, we can 
replace the hyperbolic sinuses by exponential 
functions which gives 
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In the opposite case when the inequality 
max(w/L1, w/L2) << 1, the hyperbolic sinuses are 
equal to their arguments and we have 
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               (49) 
These results show that Eq. (48) holds true when 

the sample thickness is greater than the diffusion 
length LD and, thus, when the carrier lifetime is short. 
Equation (49) indicates that if J*av is close to zero, 
the diffusion length exceeds the sample thickness 
which corresponds to a sufficiently long carrier 
lifetime. 

Further calculations require considering the total 
current density J. We start from Eqs. (1) and (2) 
which enable us to determine the sum of the hole and 
electron currents. A general case of this problem, was 
discussed in [6] where Eqs. (16) to (24) were 
involved. Here we shall present certain properties of 
the components of the thermodynamic force Eth that 
occur when the excess carriers with a concentration Δp 
are generated thermally without excitation by light.  

The thermodynamic force Eth can be expressed in 
the form 
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The components of the function Γ are  
 

Γ = Γbulk + Γμ + Γth-p ,                (52) 

where Γ  is associated with the bulk field (Eqs. (18) 
and (19) in [6]), Γ  results from the variation of the 
mobility (Eq. (19)), and Γ  is analogous to the 
function that occurs in the thermophotovoltaic effect 
(Eq. (20) in [6]). These three effects are proportional 
to grad T and to Δp. This latter quantity is here also 
proportional to grad T which results in its 
proportionality to grad T. The last term (containing 
the coefficient S ) in Eq. (50) is also proportional 
to grad T as a result of the Seebeck effect.  

bulk

μ

th-p
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Using Eq. (50) we can write 
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Vgrad EσΨσ +−=J ,                 (53) 

where EV denotes the two last terms in right-hand 
side of Eq. (50). 

3. Currents and the electric field in the 
presence of a temperature gradient and 
a magnetic field. Thermomagnetoelectric 
effect 

It is commonly known that, when the Hall effect 
occurs, the total current density J  possesses not only 
the basic current density component J, which is 
independent of the magnetic field B, but also a 
components perpendicular to J and proportional to 
the Hall angle Θ . If the internal current J* is not 
equal to zero, we have still another component 
perpendicular to J*. In effect, in the presence of 
magnetic field the total current J  is equal to 
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where μ  and μ H are the Hall mobilities of the 
holes and electrons, respectively. 

pH n

Equation (54) forms the basis of the theory of the 
photomagnetoelectric phenomena. The derivation of 
this equation can be found in [7].  

Let us now consider the case of a cuboidal plate 
(Fig. 2) of thickness w, placed in a magnetic field that 
acts along the x-axis of the plate, in which a 
temperature gradient perpendicular to the plate 
surface, and thus parallel to the z-axis, has been 

generated. The length and width d of the plate exceed 
considerably its thickness w. 

The plate is equipped with point electrodes 
installed on its faces perpendicular to the y-axis. We 
assume that the measurement of the voltage at the 
electrodes does not induce a current flow and that the 
electrodes do not affect the distributions of the 
carriers and electric potential inside the sample. 
Furthermore no electrodes are installed on the 
remaining faces of the sample. 

These circumstances determine the boundary 
conditions concerning the currents J  and J. Thanks 
to the simple geometry of the sample and the suitable 
directions of the magnetic field B and grad T we can 
anticipate so that J  has only the y-component so that 

B

B
 

JB = Jy
Bj            (58) 

and J has the y- and z-components 
 

J = Jy  j + Jz k .                        (59) 
The internal current J*, defined by Eq. (35), has 

the same direction as grad T. Thus we can write 
 

J* = Jz* k .             (60) 
The direction b of the magnetic field coincides 

with the x-axis, and thus 
 

                               b =  i.                                  (61) 
Now substituting the results (58) to (61) into Eq. 

(54) we obtain 

( ) =×+×+++

=+=
∗ iki

jiJ

z

B
y

B
x

JΘJJΘJJ

JJ

zyHzy kjkj
 

( ) ( )kj yHzzzHy JΘJJΘJΘJ −+++ ∗               (62) 

and hence 
∗++= z

B
y JΘJΘJJ zHy ,      (63) 

yHz JΘJ0 −= .            (64) 

Let us determine the component Jz from Eq. (64) 
and substitute it to Eq. (63). Then we obtain 

 

∗++= z
B
y JΘJΘJJ y

2
Hy  .    (65) 

The term ΘH
2Jy should be neglected since our 

theory is restricted to the phenomena linear with 
respect to the magnetic field. Hence we have 
 

∗+≅ z
B
y JΘJJ y .           (66) 

To determine the z-component of J we use Eqs. 
(63) and (64), which only involve currents, and relate 
them with the potential Ψ by using Eq. (53). 

When this is done we obtain 
 

vz z
J EσΨσ +

∂
∂

= .       (67) 

Fig. 2. Temperature gradient and magnetic field directions
during the measurement of the thermomagnetoelectric
voltage in a semiconductor cuboidol sample. 
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Taking Jz from Eq. (64) and substituting it in the 
above equation we obtain 
 

vyH y
J EσΨσΘ +

∂
∂

−= .  (68) 

Hence we have  

vy
H J

z
E+=

∂
∂

σ
ΘΨ .      (69) 

If the width of the sample fulfils the condition 
d >> w we can assume that Jy does not depend on y. 
This means that the edges parallel to x-axis is do not 
influence the distribution of J in the bulk of the 
sample. Moreover, the conductivity σ and Ev depend 
only on z because the temperature T is a function of 
the co-ordinate z because the temperature T is a func-
tion of the co-ordinate z. 

Why the right-hand side of Eq. (69) depends only 
on z and differentiation of Eq. (69) with respect to the 
co-ordinate y gives  

0=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

zy
Ψ            (70) 

and consequently 

0=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

yz
Ψ            (71) 

which means that 

const
y

=
∂
∂Ψ .             (72) 

Now we can define how the current density Jy
B 

depends on ∂Ψ/∂y. From Eq. (53) we have 

y
J B

y ∂
∂

−=
Ψσ           

(73) 
and substituting this in Eq. (66) we obtain  

     ∗+
∂
∂

−= z
B
y J

y
J ΘΨσ .     (74) 

In the right-hand side of the above equation the 
values of ∂Ψ/∂y is constant but the conductivity σ 
and Jz are not, and, thus JB is not constant. Especially 
it is impossible to get Jy

B = 0 independently of z. To 
fulfil this boundary condition, even approximately, it 
is advisable to accept the condition 
 

0
2

2

=∫
+

−

w

w

B
y dzJ .               (75) 

Integrating both sides of Eq. (74) we obtain 
 

∫∫∫
−

∗

−

+

−

+
∂
∂

−==
2/

2/

2/

2/

2

2

0
w

w
z

w

w

w

w

B
y Jdz

y
dzJ ΘσΨ  

                 (76) 
and hence we can calculate ∂Ψ/∂y 
 

av

av
w

w

w

w
z J

dz

J

y σ
Θ

σ
ΘΨ ∗

−

−

∗

==
∂
∂

∫

∫
2/

2/

2/

2/ ,     (77) 

where the average current density Jav
* is defined by (37). 

The formula (76) enables us to calculate the 
voltage UTME generated between the electrodes 
shown in Fig. 2. This voltage appears to be 

dJU
av

av
TEM σ

Θ
∗

= ,              (78) 

where d is the sample thickness. 
The voltage UTEM is a measure of the thermo-

magnetoelectric effect. Measuring it is equivalent 
with the measurement of the electrothermal current 
composed of the Price current and the components 
dependent on the temperature gradient and the bulk 
and surface recombination properties. 

4. Numerical calculations 

These numerical calculations permitted us to 
determine the magnitudes of the thermomagneto-
electric voltage that occurred between the contact 
electrodes of a semiconductor sample placed in a ma-
gnetic filed when a temperature gradient is imposed 
along the sample thickness (see Fig. 2). The principal 
aim of the calculations was to find how the carrier 
lifetime and the surface recombination velocity 
affected this voltage and to determine the recom-
bination parameters at which the contribution of the 
excess carriers to this effect is small and the 
magnitude of the thermomagnetoelectric voltage only 
depends on the Price thermodiffusion current − a cur-
rent which depends on the variation of the forbidden 
band gap with temperature, and on the magnitude of 
the temperature gradient established in the sample. 

The semiconductor sample chosen for the 
calculations was a cuboidal n-type germanium plate 
(of a cross-section of 1x1 cm) with a donor con-
centrations of 5⋅1019 m−3 and 1⋅1020 m−3, within 
which a temperature gradient of 4000 K/m was im-
posed, whereas the average temperature was 300 K. 
The assumption underlying the calculations was that 
the carrier mobilities, intrinsic concentration, 
effective state concentrations and the bandgap one a 
corresponding to the the average temperature. The 
intensity of the magnetic field was taken to be 0.5 T. 
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Figure 3a shows the variation of the voltage UTME, 
given by Eq. (78), as a function of the bulk carrier 
lifetime for the two donor concentrations: 5⋅1019 m−3 
(thick line) and 1⋅1020  m−3 (thin line).  

The difference between the density of the Price 
thermodiffusion current and the density of the 
generalised Price current, given by Eq. (39), can be 
seen in Fig. 3b. This plot indicates that, as the 
lifetime becomes shorter, the difference between 
these two densities quickly decreases to zero. The 
depth distribution of the excess carrier concentration 
is shown in Figs. 3c for donor concentrations of 
5⋅1019 m−3 and the carrier lifetimes of 5⋅10−4 s (thin 
line) and 1⋅10-5 s (thick line), respectively. The cal-
culation results shown in Fig. 3 were obtained under 
the assumption that the surface recombination 
velocities are S1 = S2 = 1 cm/s. 
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a) 
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Fig. 3. a) Thermomagnetoelectric voltage as a function of the 
bulk lifetime for donor concentration 5⋅1019 m−3 (thick line) 
and 1⋅1020 m−3 (thin line); b) difference between the density of 
the Price thermodiffusion current and the density of 
generalised current for donor concentration 5⋅1019 m−3 (top 
line) and 1⋅1020 m−3 (down line); c) the depth distribution of 
the excess carrier concentration in sample with two carriers 
lifetime 5⋅10−4 s (thin line) and 1⋅10−5 s (thick line), donor 
concentration 5⋅10 19 m−3. The recombination velocity S1 = S2 
= 1 cm/s. 
 

Figure 4 shows the relationships corresponding to 
those of Fig. 3, but with the surface recombination 
velocities taken to be S1 = S2 = 10000 cm/s. Figure 4a 
shows magnitude of UTME for N = 5⋅1019 m−3 (thick 
line) and for N = 1⋅1020 m−3 (thin line). The plots 
show that, in this case, the thermomagnetoelectric 
voltage depends on the carrier lifetime in a very small 
degree. 

Even though the lifetime is relatively short (one 
microsecond), the magnitude of UTME is chiefly 
determined by the Price thermodiffusion current 
(Fig. 4b). 

    0 5 10 4 0.001

6 10 4

8 10 4

0.001

0.0012

lifetime [ s ]

U
TM

E 
[ V

 ]

a) 

            0 5 10 4 0.001

0

0.02

0.04

0.06

lifetime [ s ]

Jt
h 

- J
av

 [ 
Am

^-
2]

b) 

5 0 5
4 1017

2 1017

0

2 1017

z [ mm ]

dp
 [ 

m
^-

3 
]

c) 
Fig. 4. The same like in Fig. 3 for S1 = S2 = 104 cm/s. 

 
The depth distributions of the excess carrier 

concentration shown in Figs. 4c (N = 5⋅1019 m−3) are 
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similar to those of Figs. 3c, but the concentrations of 
the excess carriers are largely smaller, especially at a 
lifetime of 5⋅10−4s (thin line). The solid thick lines 
represent these distributions for a lifetime of 1⋅10−5 s.  

The effect of the surface recombination velocity 
upon the variation of UTME is demonstrated in Fig. 5 
(lifetime 5⋅10−4 s) and Fig. 6 (lifetime 1⋅10−6 s) . Both 
plots were calculated taking the donor concentration 
in the sample to be N = 5⋅1019 m−3. 

It appears that with increasing surface recom-
bination velocity, the voltage UTME increases, and so 
it does as the carrier lifetime decreases. This means 
that UTME increases when the bulk and surface 
recombination velocities are high. The variation of 
the voltage UTME is shown in Fig. 5a. The difference 
between the density of the Price thermodiffusion 
current and the density of the Price generalised 
current is demonstrated in Fig. 5b. 
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Fig. 5. a) Thermomagnetoelectric voltage as a function of the 
recombination velocity for donor concentration 5⋅1019 m−3; 
b) difference between the density of the Price thermodif-
fusion current and the density of generalised current; c) the 
depth distribution of the excess carrier concentration Δp in 
sample with two recombination velocities of 1 cm/s (thick 
line) and 1⋅104 cm/s (solid thin line) in linear scale; d) the 
absolute the same dependencies in logarithmic scale. The 
lifetime 5⋅10−4 s. 
 

At the surface recombination velocities exceeding 
1⋅104 cm/s, the effect of excess carriers on UTME is 
minute. 

The depth distribution of the excess carrier con-
centration is shown in Figs. 5c and 5d. The thin lines 
correspond to a surface recombination velocity of 
1 cm/s, and the thick line − to a value of 1⋅104 cm/s. 
In order to better visualise the depth distribution of the 
carrier concentration Δp, its absolute values are shown 
in Fig. 5d in a logarithmic scale.  
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Fig. 6. The same like in Fig. 5 for lifetime 1⋅10−6 s. 
 

Figure 6a shows the UTME values calculated with 
the lifetime taken to be 1⋅10−6 s. In this case, with a 
minute error, the Price thermodiffusion current de-
termines the magnitude of UTME for all the values of 
the surface recombination velocity (Fig .6b). 

The depth distribution of the excess carrier con-
centration is shown in Fig. 6c. Practically, the lines 



Electron Technology – Internet Journal  35 (2003), 1  (http://www.ite.waw.pl/etij/) 10 

obtained for S = 1 cm/s coincide with the lines drawn 
for S = 1⋅104 cm/s. 

5. Conclusions 

Equations generalising the concept of the Price 
thermodiffusion current have been derived with allow-
ance made for the generation of excess carriers 
within the region of the temperature gradient and for 
the effect of the recombination parameters of the 
semiconductor upon this current. 

The theory of interaction of thermodiffusion 
current and a magnetic field showed the existence of 
thermomagnetoelectric effect (TME). 

Due to TME the voltage between electrodes of 
semiconductor sample is observed. It depends on 
thermodiffusion current and on recombination para-
meters of semiconductor. 

Numerical calculations have shown that the 
difference between the density of the Price thermo-
diffusion current and the density of the Price generalised 
current, discussed in this study, becomes evident when 
the carrier lifetime is long and the surface recom-
bination velocity is small, and this effect is appears 
particularly in weakly-doped semiconductors. 

The calculations shown in the figures give the 
TME voltages of the order of 10−3 V. This points the 
significance of TME as a tool to prove expe-

rimentally the existence and features of thermo-
diffusion current. 
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Appendix 
J* can be found by multiplying Eq. (1) by σn/σp and then subtracting Eq. (2), multiplied by σp /σ, from it. 

As a result, the terms containing dV/dz reduce themselves, which can be seen from the formula 
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,                                       (A1) 

where we have used the operator grad, since it is a more general symbol than the derivative d/dz. 
In order to identify the terms that hide Δp and grad Δp, let us transform Eq. (9) according to formula (6). 

When this is done we obtain 
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Next, we separate and transform the three components of the internal current denoted by the symbols Jth, 
J1* and J2*. Then, Jth is 
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and J1
* is 
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where we have used the identity 
                                                         .                                                              (A5) ooi pnn =2

Taking a gradient of the two sides of Eq. (4) we obtain 
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since N = const. 
To calculate grad po or grad no versus grad ln ni
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and, hence 
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Substituting this equation in (12) and using (14) we obtain 
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For the purposes of these calculations it is useful to utilise the equation that describes the coefficient kBT/q 
grad ln n
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i
2, derived as (A13). When this is done we obtain 
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The last member J2
* in Eq. (10) is 
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where we introduced the ambipolar mobility μ and the ambipolar diffusion coefficient D. 
Therefore, finally, the internal current may be expressed in the form 
                                               ,                                                  (A12) ∗∗∗ ++= 21 JJJ thJ

where the individual components are given by Eqs. (11), (17) and (18). 
According to the Maxwell-Boltzmann statistics we have 
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and thus, 
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Assuming that the effective masses of holes and electrons are constant, we obtain 
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and then 
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1 .         (A16) 

Subtracting (A16) from (A15) gives 
 

                         Tgrad
Tk

E
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k

ngrad
q
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B

GG
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B
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⎠

⎞
⎜⎜
⎝

⎛
+−−=

13ln 2                            (A17) 

 
which after substituting in Eq. (A9) becomes Eq. (A10). 
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