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ABSTRACT

In the Sections 1 and 2 of the paper the theory and a quantitative analysis of ambipolar
thermodiffusion are presented. Formulas are derived describing the internal and total current
densities and the excess carrier density distribution in a semiconductor in the presence of a
temperature gradient perpendicular to the surface of the semiconductor plate. The Sections 3
and 4 describe the interaction of thermodiffusion current and perpendicular magnetic field
resulting with emf and voltage between sample electrodes. We have called this phenomenon
as thermomagnetoelectric effect (TME). The theory gives the formula that defines the TME
voltage, which depends on the carrier lifetime and the surface recombination velocity of the

semiconductor sample.

1. Introduction

The longest known electrical phenomenon
associated with a temperature gradient is the Seebeck
thermoelectric effect, i.e. the flow of electric current
due to this gradient.

A temperature gradient may also induce an
electrically neutral flow of holes and electrons due to
the Soret thermodiffusion. This effect was described
by Price and named the ambipolar diffusion [1]. An
analysis of the transport equations has shown that the
Price theory is strictly correct where the volume
and/or surface recombination are sufficiently
extensive, since the electrically neutral flux of hole-
electron pairs results in the carrier concentration in
the individual regions of the semiconductor sample
being increased or decreased. This was discussed in
[2] where we also draw the reader’s attention to the
split of the Fermi level and to the measuring expe-
rimental possibilities that result from this fact. This
problem has been discussed also by Gurevich et al. in
[3] and [4].

The magnetic field acting in an irradiated plate
placed between the poles of a magnet splits the
electron and hole fluxes, as a result of which electric
charges and a voltage appear on the sample walls
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parallel to the fluxes and to the magnetic field. This
phenomenon is widely known as the photoelectro-
magnetic effect.

The magnetic field will act in an analogous
way also when the electron-hole pair flux is
induced by the Price ambipolar thermodiffusion.
The present paper describes and analyses this
effect, which we term as the thermomagnetoelec-
tric effect (TME).

The first part of the paper contains the derivation
of the formula that defines the internal current
density J*. This current defines quantitatively the
ambipolar thermodiffusion in the absence of the
magnetic field, under the assumption that the values
of the lifetime and the velocities of surface re-
combination are finite. The paper also describes the
distribution of the excess carrier concentration in a
cuboidal semiconductor plate within which a tem-
perature gradient perpendicular to the plate surface
occurs.

The second part of the paper gives the derivation
of the formulae that describe the action of a magnetic
field on the thermodiffusion carrier flux. Formulae
are given for the current densities and the distribution
of the electric field in a semiconductor plate, under
the assumption that the temperature gradient is
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perpendicular to its surface whereas the magnetic
field acts is parallel to it.

This has led us to a quantitative description of the
thermomagnetoelectric effect. For the sake of ex-
periments, we also give the formula for the voltage
induced by this effect.

2. Internal and total current densities and
the distribution of excess carriers in

a semiconductor plate with the temperature
gradient acting within it

Figure 1 shows a cross-section of an infinite plate
of thickness w made of inhomogeneous semi-
conductor. The axis z of the co-ordinate system is
perpendicular to the free surfaces of the plate. We
shall consider the case in which the absolute
temperature T only depends on the co-ordinate z,
which means that grad T is perpendicular to the
sample surface and that all the other parameters that
describe the state of the material are also dependent
on z alone.

w/2

o
o

grad T

-w/2

Fig. 1. Currents and temperature gradient directions in an
infinite homogeneous semiconductor plate.

According to Ref. [5], the densities of the hole
current J, and the electron current J, in this case are
given by:

dv dp k,T dlInn,
J =—0, —-u k;, T —+0 L —
r P dz Hols dz g dz
. k,T
o,le,—In | d K ' 1)
N, Jdz\ ¢
Inn,
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N, )dz\ g¢q

where o, o, are the hole and electron conductivities,
kg is the Boltzmann constant, 1, u, are the hole and
electron mobilities, respectively, g, &, are coeffi-
cients dependent on the current carrier scattering
model, Ny, N are the state densities of the basic and
conductance bands, ¢ is the electron charge, 7 is the
electric potential, and »; is the intrinsic concentration
at a given temperature.

Equations (1) and (2) have a general character and
do not reflect the role played by the excess carriers,
although the quantities » and p include both the
equilibrium concentrations #n,, p, and the con-
centration of excess carriers.

To demonstrate how the excess carrier con-
centration affects the phenomena that occur in the
semiconductor, we should use the quasi-neutrality
principle and express the concentrations in the forms:

n=p+N, 3)
no=po+ N (4)

which can be referred to both complete con-
centrations » and p, and the equilibrium con-
centrations n,, p,. It is also assumed that the
concentration N is equal to the difference between the
concentrations of ionised donors and ionised
acceptors, Np© — N,~, and does not depend on the
excess concentrations or on the temperature.
Subtracting Egs. (3) and (4), we obtain

n—n,=p=po=Ap ()
and hence
n=n,+Ap, p = p, + Ap. (6)
Let the current densities be expressed as

(e}
— P *
JP—O_J+J1

J, =223 3", ()
(o2
where the density of the current which we will denote
with the term “internal current” is
. o o,
J :7"Jp—7’Jn. (8)

The current components, which are fractions of the
total current ./, are expressed in a simple form; what is to
be determined is the internal current J* that is involved
in both the currents but with the opposite signs.

When the total current J = 0, the hole and electron
currents cancel each other, but nevertheless they
carry hole and electrons fluxes that flow in the same
directions. This results from the fact that J, = J* and
J, = =J* on the assumption of zero total current. This
motivates the term “internal current”.

If a temperature gradient occurs, these currents
and the fluxes they carry play a particular role, which
will be discussed in this Section. The internal current
J* is the sum of the three components

I =Jn+ 3 4327, ©
where
O O
J, =-——2-" gp+gn+EG A 5sT . (10)
o k,T )dz\ g¢q
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Jy, 18 the basic component of the electrothermal
current (this is why we use the index ‘th’) It is
consistent with the Price equation for ambipolar
thermodiffusion [1] in the derivation of which
Price took no account of excess carriers, an
assumption which would be justified if a very strong
bulk and/or surface recombination took place in the
semiconductor sample. The aim of the present
Section is to include the effect of a finite value re-
combination.

Let us express J;* in the form

. o O
'J1= - p(n—o'Fpoj'

o p n
3_idEG N E, Ap i k,T (11)
ky dT k,T Jn,+p, dz\ gq
and.J," in the form
JZ* =—qD ﬂ:-kaTdA_p(lZ)
dx dx

Equations (10), (11) and (12) are derived in
Appendix 1, which also gives the definitions of the
ambipolar diffusion coefficient D and the ambipolar
mobility sz

Introducing the quantity (with dimension ms™)

v, - 3_LdEG N E, 1  d (kT (13)
ky dT kT )n,+p,6 dz\ q
we can write, using Egs. (9), (10), (11) and (12), that
. dA
3'=J, +aV,Ap-gp £ (19

This equation is one of the transport equations.
The second equation is the continuity equation. In a
stationary case, assuming the simplest recombination
model and taking into account that no excess carrier
generation sources are present, we have

as , __dJn _ _Ap
dz dz r

(15)

where zis the lifetime of the excess carriers.

Since no electrodes are installed on the sample
surfaces, we should take J = 0. Then using Eq. (7) we
obtain

] © qAp
dz T

(16)

The second continuity equation is derived from
Egs. (13) and (14) and has the form:

dAp — Vth Ap _ ']* + Jrh

dz D gD gD

. (17)

The last two equations constitute a system of
differential transport equations with the two unknown
functions J*(z) and Ap(z). Both equations are linear
equations with variable coefficient 7, and J,
according to Egs. (10) and (13). Hence the solutions

should be found by numerical methods. It is,
however, advisable that the solutions should be
sought with the approximately constant values of 7,
and Jy, assumed a priori.

In order to obtain an equation with the single
unknown J*, we use Eq. (16) for determining the
quantities
Ap = o d]’ ’ dAp:_zdzJ*.
q dz dz

(18)
q dz*

Then substituting these quantities into Eq. (14) we
obtain

* 2 *
‘]*:Jth_VthdJ—"‘DTdJZ . (19)
2 dz
Now denoting
Vthr 2
L = -—‘£—, LD =Dr (20)

and using this notation in Eq. (19) we obtain

d*J" dJ *
L’ - 2L -J =-J, (21
D dZ 2 u dZ th
The solution of this equation is the function

J'=4de"™ +Be " +J,, (22
where 4 and B are arbitrary constants, whereas L;
and L, are given by

L,=+L,>+L,"” +L,, (23

where L, and L are given by (20).
The derivative of J* with respect to z is

aJ- A I >

= — - —e

dz L, L,

(24)

since, by virtue of the initial assumption, J;;, = const.
The constants 4 and B should be determined from
the boundary conditions

J*(—§)= ~qS ,Ap (- %),

T =S ,Ap(S) . (29)
2 2

where —w/2 and w/2 are the co-ordinates of the
bottom and top surfaces of the sample, respectively,
and Sy, S, are the surface recombination velocities on
the bottom and top sample surfaces, respectively.

Since we seek J*, we substitute Ap as defined by
Eqg. (18) and obtain

W dJ *

J (——=) =8 7(— )
(=) =8 =) ..,
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J(=)=-8,7 26
Ey=-s.: (2 . eo
Then, inserting the values of J*(zw/2) and

(dJ*/dz), = + 12 s given by Egs. (22) and (25) into Eq.
(26), we obtain

w w

de *h o+ Be’tt 4 J, =
S\t iei _B , 27)
Ll 2
de " + Be 2% 4 J, =
A W B _ w
I R L R (28)
Ll 2

Ordering these equations we obtain

Ae“l[l— E) + Beuz(l+ ﬁ] =—J,, (29)
L

1

Ae o 14527 | petta[1- 52T |y .
Ll LZ

Hence we can determine the constants 4 and B as

- R
A=—J,hQ2—2,

A:QIQZ_RR (34)
Substituting these into Eq. (22) gives
J(2)=J, 1—Q2_R2 eZ—Ql_RleL2 . (35)

A A

Now by differentiating J*(z) of Eq. (35) and using
the first formula in (18) we obtain the equation for
the distribution 4p(z) in the form

Ql Lz
L 2

4 0, -
A =—
P(Z) g/ th{ L,
(36)

For further calculations we need a formula that
defines the average value of the current density, J*,,,
which can be obtained from Eq. (35) to be

L
J, =— J.J*(Z)dZ =
A
]_Qz_Rz 2L1Sh wo
A4 w 2L,
T O -R 2L, , w (37
1 1 2sh
A w 2L,

Let us consider the two cases:
1) If the carrier lifetime ris great enough for
the inequality

VL, + L, —|L,|>> max (KRRJ (38)
2's.'s,

to be fulfilled, we can take

2L 2L
Lo 212 2 gy (39)
w 2L, w 2L,
and, then, we have
J = Jth(l— Q, - RZZ 9, - Rl). (40)

The bracketed members can further be simplified
by leaving, in the brackets of Egs. (32) and (33), only
the members that contain z. If this is done, we have

St S, St St
0,+0 —R, R_——————— 2° —
Ll L2 L2 Ll
D
and
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§5 72 l[Li) §5. 72 E[i+i)
:12€2L1L2 192 2L L) o

LL, oL,

2
_&S_ZTZShz[A+1j;

A

LL 2 L
12 Ll 2 (42)
A
L1L2 Ll LZ
2
S (L Lw= =2 (L L
L, D
where Egs. (23) are used.
It follows from these equations that
_(S,+S2)(L,+L2):2(i LJ (43)
- S;;S'g (L1 +L, )W wAS S

Hence, if the condition (38) is fulfilled, we obtain
J*,, from equation (40) as

Jo=J, |:1_2(L+ Lj}(44)
w S, S,

2) If S; =S, =0, we have

w
Q2 - R2 =_2Sh 2L2 ’
w
O, - R, =-2sh T (45)

e?le’te = _osh L+L
2L, L,

Substituting these results in Eq. (37) we obtain

sh W sh 14
1 ZL 2L, 2L, 3
w wi( 1 1
Sh ? L7+ 7
J:V = Jth ' ’ =
sh W sh 4
2L_2 2L, 2L,
woggwll 1
2L, L,
w Sh w
J,|1-2 L +L, 2L, 2L, (47)

If, in addition, min (w/Li, w/Ly) >> 1, we can
replace the hyperbolic sinuses by exponential
functions which gives

VLD + I
J=J, {1_ L1+L2} =J, {1_ 2“1’]. (48)

w w

In the opposite case when the inequality
max(w/Ly, w/L;) << 1, the hyperbolic sinuses are
equal to their arguments and we have

1
Lo+L, w
Jooog 1opfatle Wt 201 (1
w  4LL, w\ L, L,
(49)

These results show that Eq. (48) holds true when
the sample thickness is greater than the diffusion
length Ly and, thus, when the carrier lifetime is short.
Equation (49) indicates that if J*,, is close to zero,
the diffusion length exceeds the sample thickness
which corresponds to a sufficiently long carrier
lifetime.

Further calculations require considering the total
current density J. We start from Egs. (1) and (2)
which enable us to determine the sum of the hole and
electron currents. A general case of this problem, was
discussed in [6] where Egs. (16) to (24) were
involved. Here we shall present certain properties of
the components of the thermodynamic force ¢, that
occur when the excess carriers with a concentration Ap
are generated thermally without excitation by light.

The thermodynamic force ¢, can be expressed in
the form

—grad ¥ + I" Apgrad T + S,,_,,grad T . (50)

The potential ¥ is has been defined in [6] by
Eq. (17) as

_kBT lun_lupln O .(51)
q /’ln+/’lp 60

Y =V

The components of the function 7 are

I'= J—Zmlk + 1:1 + Eh-p ) (52)

where 7}, is associated with the bulk field (Egs. (18)
and (19) in [6]), 7, results from the variation of the
mobility (Eq. (19)), and 77, is analogous to the
function that occurs in the thermophotovoltaic effect
(Eg. (20) in [6]). These three effects are proportional
to grad T and to Ap. This latter quantity is here also
proportional to grad T which results in its
proportionality to grad T. The last term (containing
the coefficient Siy.e) in Eqg. (50) is also proportional
to grad T as a result of the Seebeck effect.
Using Eq. (50) we can write
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J=—-0grad ¥ + ok, (53)
where ¢ denotes the two last terms in right-hand
side of Eqg. (50).

3. Currents and the electric field in the
presence of a temperature gradient and
a magnetic field. Thermomagnetoelectric
effect

It is commonly known that, when the Hall effect
occurs, the total current density J® possesses not only
the basic current density component J, which is
independent of the magnetic field B, but also a
components perpendicular to J and proportional to
the Hall angle @y. If the internal current J* is not
equal to zero, we have still another component
perpendicular to J*. In effect, in the presence of
magnetic field the total current J* is equal to

JBE=3+0,Ixb+OJ" xb, (54)
where
(o3
0, =—L6,+220,, ()
(o} o
® =60,-0,, (56)
@p=,upH|B|7@n:_/unH|B|7
B
b=—, 57
B| (57)

where 1,5 and g,/ are the Hall mobilities of the
holes and electrons, respectively.

Equation (54) forms the basis of the theory of the
photomagnetoelectric phenomena. The derivation of
this equation can be found in [7].

Let us now consider the case of a cuboidal plate
(Fig. 2) of thickness w, placed in a magnetic field that
acts along the x-axis of the plate, in which a
temperature gradient perpendicular to the plate
surface, and thus parallel to the z-axis, has been

- grad T
J*
° Urpmg °©

Fig. 2. Temperature gradient and magnetic field directions
during the measurement of the thermomagnetoelectric
voltage in a semiconductor cuboidol sample.

generated. The length and width d of the plate exceed
considerably its thickness w.

The plate is equipped with point electrodes
installed on its faces perpendicular to the y-axis. We
assume that the measurement of the voltage at the
electrodes does not induce a current flow and that the
electrodes do not affect the distributions of the
carriers and electric potential inside the sample.
Furthermore no electrodes are installed on the
remaining faces of the sample.

These circumstances determine the boundary
conditions concerning the currents J* and J. Thanks
to the simple geometry of the sample and the suitable
directions of the magnetic field B and grad T we can
anticipate so that J® has only the y-component so that

3= (58)
and J has the y- and z-components
J=J,j+Jk. (59)

The internal current J*, defined by Eq. (35), has
the same direction as grad T. Thus we can write

J* =J.*k. (60)
The direction b of the magnetic field coincides
with the x-axis, and thus
b= (61)
Now substituting the results (58) to (61) into Eq.
(54) we obtain
J=JJi+J]j=
J i+ T k+0,(J,j+JK)xi+6 Jkxi=

v, +6,7.+6 J:)i+(1. 6,7 K (62)
and hence

Jy=J,+0,J.+0 J;, (63

0=J,-60,J,. (64)

Let us determine the component J, from Eq. (64)
and substitute it to Eq. (63). Then we obtain
B 2 *
J,=J,+0,J,+6 J, . (65

The term @HZJy should be neglected since our

theory is restricted to the phenomena linear with

respect to the magnetic field. Hence we have

B *

J,=J,+60 J,. (66)

To determine the z-component of J we use Egs.

(63) and (64), which only involve currents, and relate

them with the potential ¥ by using Eq. (53).
When this is done we obtain

oV

0z

+ ok . (67)
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Taking J, from Eq. (64) and substituting it in the
above equation we obtain

O,J, = —0'8—T+ cE . (68)
oy
Hence we have
@H

o _ J, +E, .
0z o 7

(69)

If the width of the sample fulfils the condition
d >> w we can assume that J, does not depend on y.
This means that the edges parallel to x-axis is do not
influence the distribution of J in the bulk of the
sample. Moreover, the conductivity o and &, depend
only on z because the temperature T is a function of
the co-ordinate z because the temperature 7' is a func-
tion of the co-ordinate z.

Why the right-hand side of Eq. (69) depends only
on z and differentiation of Eq. (69) with respect to the
co-ordinate y gives

i( o j _ 0 (70)
oy \ 0z
and consequently
O 0¥ |_g (71)
oz \ Oy
which means that
8_‘}’ = const (72)
dy

Now we can define how the current density .J,”
depends on 5%/&y. From Eq. (53) we have

oy
(73)

and substituting this in Eq. (66) we obtain
¥ R
J,) =-o or oJ!.
oy

In the right-hand side of the above equation the
values of &%) is constant but the conductivity o
and J. are not, and, thus J* is not constant. Especially
it is impossible to get JyB = 0 independently of z. To
fulfil this boundary condition, even approximately, it
is advisable to accept the condition

I Jf dz =0.
-5

Integrating both sides of Eq. (74) we obtain

(74)

(75)

+% wl?2 wl?2
o¥ x
IJf dz=0=—-——— J.O'dZ + 06 -[JZ
,% 8}7 -wl?2 -wl2
(76)
and hence we can calculate 2% 5
wl2
oY /s J!
— =0 2 _ =0, (77
oy J‘ o
odz

-wl2

where the average current density ./, is defined by (37).

The formula (76) enables us to calculate the
voltage Uryr generated between the electrodes
shown in Fig. 2. This voltage appears to be

UTEM =0 _Jav d,
(o2

av

(78)

where d is the sample thickness.

The voltage Urgy is a measure of the thermo-
magnetoelectric effect. Measuring it is equivalent
with the measurement of the electrothermal current
composed of the Price current and the components
dependent on the temperature gradient and the bulk
and surface recombination properties.

4. Numerical calculations

These numerical calculations permitted us to
determine the magnitudes of the thermomagneto-
electric voltage that occurred between the contact
electrodes of a semiconductor sample placed in a ma-
gnetic filed when a temperature gradient is imposed
along the sample thickness (see Fig. 2). The principal
aim of the calculations was to find how the carrier
lifetime and the surface recombination velocity
affected this voltage and to determine the recom-
bination parameters at which the contribution of the
excess carriers to this effect is small and the
magnitude of the thermomagnetoelectric voltage only
depends on the Price thermodiffusion current — a cur-
rent which depends on the variation of the forbidden
band gap with temperature, and on the magnitude of
the temperature gradient established in the sample.

The semiconductor sample chosen for the
calculations was a cuboidal n-type germanium plate
(of a cross-section of 1x1 c¢cm) with a donor con-
centrations of 510" m™ and 1.10° m™, within
which a temperature gradient of 4000 K/m was im-
posed, whereas the average temperature was 300 K.
The assumption underlying the calculations was that
the carrier mobilities, intrinsic concentration,
effective state concentrations and the bandgap one a
corresponding to the the average temperature. The
intensity of the magnetic field was taken to be 0.5 T.
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Figure 3a shows the variation of the voltage Uy,
given by Eq. (78), as a function of the bulk carrier
lifetime for the two donor concentrations: 5-10™° m™
(thick line) and 1-10%° m™ (thin line).

The difference between the density of the Price
thermodiffusion current and the density of the
generalised Price current, given by Eq. (39), can be
seen in Fig. 3b. This plot indicates that, as the
lifetime becomes shorter, the difference between
these two densities quickly decreases to zero. The
depth distribution of the excess carrier concentration
is shown in Figs. 3c for donor concentrations of
5.10" m™ and the carrier lifetimes of 5-10 s (thin
line) and 1.10° s (thick line), respectively. The cal-
culation results shown in Fig. 3 were obtained under
the assumption that the surface recombination
velocities are S1 = S, = 1 cm/s.

0.0012
0.001]
I~ ge104
=
5 6010
40104
201574
—4
(]
0 Iifet?mleo[ s] 0.001
a)
3
& 2
£
<
3
kS
= 1
,‘_")
0
—4
( ]
b) 0 lifetmal s | 0.001
»1d°
50108
o
<
.
£ 0
= N\
©
—50108
-w1d°
-5 0 5
C) z[mm]

Fig. 3. a) Thermomagnetoelectric voltage as a function of the
bulk lifetime for donor concentration 5-10%° m= (thick line)
and 1-10% m=2 (thin line); b) difference between the density of
the Price thermodiffusion current and the density of
generalised current for donor concentration 5-10*° m= (top
line) and 1-10% m= (down line); c) the depth distribution of
the excess carrier concentration in sample with two carriers
lifetime 5-10™ s (thin line) and 1-107° s (thick line), donor
concentration 5-10 ** m™3. The recombination velocity $; = S,
=1cmls.

Figure 4 shows the relationships corresponding to
those of Fig. 3, but with the surface recombination
velocities taken to be S; = S, = 10000 cm/s. Figure 4a
shows magnitude of Upy: for N = 510" m™ (thick
line) and for N = 1.10%° m™® (thin line). The plots
show that, in this case, the thermomagnetoelectric
voltage depends on the carrier lifetime in a very small
degree.

Even though the lifetime is relatively short (one
microsecond), the magnitude of Urye is chiefly
determined by the Price thermodiffusion current
(Fig. 4b).

0.0012,
— 0.001
>
w
Z
= ge104
60104
0 501074 0.001
Iifet|me(f s] a)
0.06
<E 0.04
<
% r_k
bav]
L 002
g
0
0 50194 0.001
Iifenme(f s] b)
201017
_ 0
0
<
E
&
—2e107
—4e10%7
-5 0 5
z[mm] C)

Fig. 4. The same like in Fig. 3 for §; = S, = 10* cm/s.

The depth distributions of the excess carrier
concentration shown in Figs. 4c (N = 5-10"° m™) are
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similar to those of Figs. 3c, but the concentrations of
the excess carriers are largely smaller, especially at a
lifetime of 5-10~*s (thin line). The solid thick lines
represent these distributions for a lifetime of 1.107° s.

The effect of the surface recombination velocity
upon the variation of Upyg is demonstrated in Fig. 5
(lifetime 5-10™s) and Fig. 6 (lifetime 1.10°°s) . Both
plots were calculated taking the donor concentration
in the sample to be N =5-10"m™.

It appears that with increasing surface recom-
bination velocity, the voltage Upnyz increases, and so
it does as the carrier lifetime decreases. This means
that Upyr increases when the bulk and surface
recombination velocities are high. The variation of
the voltage Uy is shown in Fig. 5a. The difference
between the density of the Price thermodiffusion
current and the density of the Price generalised
current is demonstrated in Fig. 5b.

0.005
S 0.004 il
w
z Rl
5 0003
0.002
1 10 _ 100 2160 m1id
S[cm(/)s] a)
10
N
9
£
= 5 \
3
=
<
s \
0
1 10 100 10 m1d
S[cm?s] b)
201019
0
@
£ —2e10%°
=
he}
—4e1019
—6e1019
-5 0 5
z[mm] C)
101070
101019
©
<
E 1010'8
S
1010t
101016
-5 0 5
z[mm] d)

Fig. 5. a) Thermomagnetoelectric voltage as a function of the
recombination velocity for donor concentration 5-10%° m=;
b) difference between the density of the Price thermodif-
fusion current and the density of generalised current; c) the
depth distribution of the excess carrier concentration 4p in
sample with two recombination velocities of 1 cm/s (thick
line) and 1-10* cm/s (solid thin line) in linear scale; d) the
absolute the same dependencies in logarithmic scale. The
lifetime 5-107s.

At the surface recombination velocities exceeding
1-10* cm/s, the effect of excess carriers on Upyz is
minute.

The depth distribution of the excess carrier con-
centration is shown in Figs. 5¢ and 5d. The thin lines
correspond to a surface recombination velocity of
1 cm/s, and the thick line — to a value of 1-10* cm/s.
In order to better visualise the depth distribution of the
carrier concentration Ap, its absolute values are shown
in Fig. 5d in a logarithmic scale.
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Fig. 6. The same like in Fig. 5 for lifetime 1-107%s.

Figure 6a shows the Uy values calculated with
the lifetime taken to be 1-10°° s. In this case, with a
minute error, the Price thermodiffusion current de-
termines the magnitude of Uy for all the values of
the surface recombination velocity (Fig .6b).

The depth distribution of the excess carrier con-
centration is shown in Fig. 6c. Practically, the lines
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obtained for S = 1 cm/s coincide with the lines drawn
for S =1.10* cm/s.

5. Conclusions

Equations generalising the concept of the Price
thermodiffusion current have been derived with allow-
ance made for the generation of excess carriers
within the region of the temperature gradient and for
the effect of the recombination parameters of the
semiconductor upon this current.

The theory of interaction of thermodiffusion
current and a magnetic field showed the existence of
thermomagnetoelectric effect (TME).

Due to TME the voltage between electrodes of
semiconductor sample is observed. It depends on
thermodiffusion current and on recombination para-
meters of semiconductor.

Numerical calculations have shown that the
difference between the density of the Price thermo-
diffusion current and the density of the Price generalised
current, discussed in this study, becomes evident when
the carrier lifetime is long and the surface recom-
bination velocity is small, and this effect is appears
particularly in weakly-doped semiconductors.

The calculations shown in the figures give the
TME voltages of the order of 107 V. This points the
significance of TME as a tool to prove expe-

rimentally the existence and features of thermo-
diffusion current.

REFERENCES

1. P. J. PRICE, Ambipolar Thermodiffusion of Electrons and
Holes in Semiconductors, Philosoph. Mag. 1955, 46, 7,
1252-1260.

2. S. SIKORsKI, T. PIOTROWSKI, The Soret Thermodiffusion
Currents and the Excess Carrier Thermoinjection Effect
in Semiconductors, Electron Technol., 2000, 33, 4,
506-517.

3. Yu. G. GURrevIcH, O. Yu. Titov, G. N. Logvinov, O. I. Lyu-
BIMOV, Nature of the Thermopower in Bipolar Semi-
conductors, Phys. Rev. B, 1995, 51, 11, 6999-7004.

4. Yu. G. GUREVICH, G. N. LogVvINov, |. N. VOLOVICHEV,
G. Espeio, O.YU.TITOV, A.MERIUTS, The Role Of Non-
Equilibrium Carriers in the Formation of Thermo-E.M.F.
in Bipolar Semiconductors, phys. stat. sol. (b), 2002, 231,
1, 278-293.

5. S. SIKORsKI, T. PIOTROWSKI, Transport of Excess Charge
Carriers in an Inhomogeneous Semiconductor in the
Presence of Temperature Gradient, Electron Technol.,
2000, 33, 4, 494-505.

6. T. PIOTROWSKI, S. SIKORSKI, Photovoltaic Effect in an
Inhomogeneous Semiconductor with Position Dependent
Temperature, Semicond. Sci. a. Technol., 2001, 16,
750-758.

7. S. SIKORSKI, T. PIOTROWSKI, Photovoltaic Phenomena in
Inhomogeneous Semiconductor. To be published in
"Progress in Quantum Electronics".

Appendix
J* can be found by multiplying Eq. (1) by o,/0;, and then subtracting Eq. (2), multiplied by o, /o, from it.
As a result, the terms containing d?/dz reduce themselves, which can be seen from the formula
. o, 0,0, k;T
J' =——"u kyTgrad p-— Y u k4 Tgrad n+2— grad Inn, —
o,0 _ kK, T o, 0,
— gp—lnn—’ grad —2— - —~ g, —1In i grad B—z
o N, q o N .
o n O- g O- _n-pr B T 2
- —u kyTgrad p——— P k,Tgrad n + —= grad Inn/ —
o q
o, 0 ? k,T
—|&,+¢,—1In " grad —2—, (A1)
o NNy q

where we have used the operator grad, since it is a more general symbol than the derivative d/dz.
In order to identify the terms that hide Ap and grad Ap, let us transform Eq. (9) according to formula (6).

When this is done we obtain

Jeo=_Z29»
(o2

£, ¢,

o, o
—,u kyTgrad p, ——,u k,Tgrad n, +

n. kT
-~ In —— |grad —2— -
NNy q
TaTp kT grad Inn’ -
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(A2)

Next, we separate and transform the three components of the internal current denoted by the symbols J;,
Ji* and Jo*. Then, Jy, is

2
0,0 n k,T 0,0 E
J,=—""|¢,+¢&, ~In—— |grad——= - “le, ¢ (A3)
o N.N, q o k,T
and J; is
o, c,0,
J,/ = ——,u k,Tgrad n, + —= kpT grad Inn’ =
o q
o o oo c,0,
o, pkBTgrad Py 9.0, kyT grad n, . kTgrad Inn? =
o q p o q n o q
o,
0,0, k,T (grad P, N grad n, _ grad In nizj _
o q p n
o,0
0,0, k,T (grad P, N grad n, _ grad In ”OPOJ _
o q p n
0,0, kT ( grad p, N grad n, grad p, grad n, )\ _
o q p n P, n,
o,c T 1 1 1 1
- #kB—H—— —Jgrad Do + (—— —jgrad no} =
o q P D, n n,
oo T - _
_ 949, ks {p” pgrad p, +—= ngrad no}z
o q pp, hn,
o0
— n PkBT|:grad po+grad n0:|Ap’ (A4)
o q pp, hn,
where we have used the identity
ni2 = 7’10 po * (A5)
Taking a gradient of the two sides of Eq. (4) we obtain
grad n, = grad p, (A6)
since N = const.
To calculate grad p, or grad n, versus grad In ni?, we should use identities (12) and (13)
grad Inn? = grad In(p,n,) = grad Inn, + grad In p, =
g g (1, 1), -
n() p() n() o
and, hence
1 1)
grad p, = (—+ —j grad Inn’ = Mgmd Inn?. (A8)
n() p() n() + p()

Substituting this equation in (12) and using (14) we obtain
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O O
J = "kBT[ 1 2 }Apgrad P, =
o q pp, hn,
O O ]
) pkBT[ Lo L | P pperad Inn? =
o q ppo nno_n0+p0
O O ]
#ksi{”_a_kp_o A—pgmd Inn?. (A9)
o q Lp njn,+p,

For the purposes of these calculations it is useful to utilise the equation that describes the coefficient kzT/g
grad In n?, derived as (A13). When this is done we obtain

c,0
J =Tl kT Ny , Po 3__1 d, + E02 Ap grad T =
o q )% n T k,T dT k,T* )n,+ p,
c,0 dE E k,T
p | o Po 3 - 1 g & Ap grad —2— . (A10)
o P n ky dT k,T )Jny+ p, q
The last member J," in Eq. (10) is
* o o
J, 2—( kT + —F ,unkBTjgrad Ap =
o
O-n O-P
- u, + M, \kyT grad Ap = —uk ;T grad Ap = —qD grad Ap , (Al1)
o) o

where we introduced the ambipolar mobility z and the ambipolar diffusion coefficient D.
Therefore, finally, the internal current may be expressed in the form

J"=J,+3,;,+3,, (A12)

where the individual components are given by Egs. (11), (17) and (18).
According to the Maxwell-Boltzmann statistics we have

E
n?=N.N, eXp(_kGTj (A13)
B
and thus,
T T T E
ks grad Inn}? = ks grad In N.N, — ks grad “ 1, (A14)
q q q kT

Assuming that the effective masses of holes and electrons are constant, we obtain

kpT grad In N.N, = 3grad kpT (A15)
and then ! !
kpT rad fc; = kBT(le gradE, —%gmd Tj = (le d;;G - kEYG" jgmd T. (A16)
Subtchting (Alg) from ZAlS) Sives ’ '
k,T grad Inn? = {B—LdEG —+E—ngrad T (AL7)
q ky dT kT

which after substituting in Eq. (A9) becomes Eqg. (A10).
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