PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Generation-recombination effects in high temperature HgCdTe heterostructure photodiodes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Solid State Crystals : Material Science and Applications (4ICSSC) and Polish Conference on Crystal Growth (7PCCG) ; (16-20.05.2004 ; Zakopane-Kościelisko, Poland)
Języki publikacji
EN
Abstrakty
EN
The effect of built-in electric fields and misfit dislocations on dark currents in high temperature MOCVD HgCdTe infrared heterostructure photodiodes has been investigated. From experimental data results that the current-voltage characteristics at 240 K and 300 K indicate significant contributions from tunnelling effects, which dominate the leakage current mechanism for reverse bias greater than a few tens of milivolts. Standard theoretical models show that Auger generation-recombination processes determine dark current in high temperature HgCdTe photodiodes. But taking into account only Auger mechanisms much overestimated theoretical results are obtained. To explain this fact, a two-dimensional model has been developed to investigate the dark current mechanisms in the vicinity of the junction termination at built-in electric fields. Calculated profiles of the energy bands and electric field along different cross-sections of the photodiode indicate that the electric field achieves a maximum value of the order of mid 10⁵ V/cm in the area the junction termination at the HgCdTe heterointerface. In these regions the high density of misfit dislocations are observed too. The presence of high electric field in this area decreases the ionisation energies of trap levels located in region of dislocations core, and hence increases the efficiency of Shockley-Read-Hall generation-recombination process. In addition to diffusion, generation-recombination and trap assisted tunnelling mechanisms, our model include the Poole-Frankel and phonon-trap assisted tunnelling effects in calculations of dynamic resistance of the junctions. The best fit of experimental data with theoretical predictions for dynamic resistance versus temperature has been obtained for dislocation density in the bulk of HgCdTe layer equal to 5x10⁻⁷ cm⁻².
Twórcy
  • Warsaw Agricultural University, 166 Nowoursynowska Str., 02-787 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
autor
  • Vigo System S.A., 3 Świetlików Str., 01-389 Warsaw, Poland
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
Bibliografia
  • 1. P. Norton, “HgCdTe infrared detectors”, Opto-Electron. Rev. 10, 159-174 (2002).
  • 2. T. Yamamoto, Y. Miyamoto, and K. Tanikawa, “Minority carrier lifetime in the region close to the interface between the anodic oxide CdHgTe”, J. Crystal Growth 72, 270-274 (1985).
  • 3. S.H. Shin, J.M. Arias, M. Zandian, J.G. Pasko, and R.E. DeWames, “Effect of the dislocation density on minority-carrier lifetime in molecular beam epitaxial HgCdTe”, Appl. Phys. Lett. 59, 2718-2720 (1991).
  • 4. D.L. Polla and C.E. Jones, “Deep level studies of HgCdTe. I: Narrow-band-gap space-charge spectroscopy”, J. Appl. Phys. 52, 5118-5131 (1981).
  • 5. D.L. Polla, M.B. Reine, and C.E. Jones, “Deep level studies of HgCdTe. II: Correlation with photodiode performance”, J. Appl. Phys. 52, 5132-5138 (1981).
  • 6. D.L. Polla, R.L. Aggarwall, D.A. Nelson, J.F. Shanley, and M.B. Reine, “Hg vacancy related lifetime in HgCdTe by optical modulation spectroscopy”, Appl. Phys. Lett. 43, 941-943 (1983).
  • 7. M.E. de Souza, M. Boukerche, and J. P. Faurie, “Minority- carrier lifetime in p-type (111)B HgCdTe grown by molecular- beam epitaxy”, J. Appl. Phys. 68, 5195-5199 (1990).
  • 8. R. Fastow and Y. Nemirovsky, “The excess carrier lifetime in vacancy- and impurity-doped HgCdTe”, J. Vac. Sci. Technol. A8, 1245-1250 (1990).
  • 9. M.C. Chen, R.S. List, D. Chandra, M.J. Bevan, L. Colombo, and H.F. Schaake, “Key performance-limiting defects in p-on-n HgCdTe heterojunction infrared photodiodes”, J. Electron. Mater. 25, 1375-1382 (1996).
  • 10. S. Barton, P. Capper, C.L. Jones, N. Metcalfe, and D. Dutton, “Determination of Shockley-Read trap parameters in n- and p-type epitaxial CdxHg1-xTe”, Semicond. Sci. Technol. 11, 1163-1167 (1996).
  • 11. A. Rogalski, K. Adamiec, and J. Rutkowski, Narrow-Gap Semiconductor Photodiodes, SPIE Press, Bellingham, 2000.
  • 12. W. Van Roosbroeck, “Theory of the electrons and holes in germanium and other semiconductors”, Bell Syst. Tech. J. 29, 560-607 (1950).
  • 13. M. Kurata, Numerical Analysis of Semiconductor Devices, Lexington Books, DC Heath (1982).
  • 14. H.K. Gummel, “A self-consistent iterative scheme for one-dimensional steady state transistor calculations”, IEEE Trans. Electron Devices ED 11, 455-465 (1964).
  • 15. A. De Mari, “An accurate numerical steady-state one-dimensional solution of the p-n junction”, Solid State Electronics 11, 33-58 (1968).
  • 16. Software: Semicond Devices, Dawn Technologies, Inc. California.
  • 17. Software: Apsys, Crosslight Software, Inc. Ontario, Canada.
  • 18. K. Jóźwikowski, J. Piotrowski, K. Adamiec, and A. Rogalski, “Computer simulation of HgCdTe photovoltaic devices based on complex heterostructures”, Proc. SPIE 3629, 74-80 (1999).
  • 19. K. Jóźwikowski, “Computer simulation of non-cooled long wavelength multi-junction (Cd,Hg)Te photodiodes., Infrared Phys. & Technol. 41, 353-359 (2000).
  • 20. K. Jóźwikowski and A. Rogalski, “Effect of dislocations on performance of LWIR HgCdTe photodiodes”, J. Electron. Mater. 29, 736-741 (2000).
  • 21. K. Jóźwikowski and A. Rogalski, .Computer modelling of dual-band HgCdTe photovoltaic detectors”, J. Appl. Phys. 90, 1286-1291 (2001).
  • 22. K. Jóźwikowski, W. Gawron, J. Piotrowski, and A. Jóźwikowska, “Enhanced numerical modelling of non-cooled long-wavelength multi-junction (Cd,Hg)Te photodiodes”, IEE Proc.-Circuits Devices Syst. 150, 65-71 (2003).
  • 23. A. Piotrowski, P. Madejczyk, W. Gawron, K. Kłos, M. Romanis, M. Grudzień, A. Rogalski, and J. Piotrowski, “MOCVD growth of Hg1.xCdxTe heterostructures for uncooled infrared photodetectors”, Opto-Electron. Rev. 12, 453-458 (2004).
  • 24. S.M. Johnson, D.R. Rhiger, J.P. Rosbeck, J.M. Peterson, S.M. Taylor, and M.E. Boyd, “Effect of dislocations on the electrical and optical properties of long-wavelength infrared HgCdTe photovoltaic detectors”, J. Vac. Sci. Technol. B10, 1499-1506 (1992).
  • 25. K. Jóźwikowski and A. Rogalski, “Effect of dislocations on performance of LWIR HgCdTe photodiodes”, J. Electron. Mater. 29, 736-741 (2000).
  • 26. K. Jóźwikowski and T. Niedziela, “The influence of dislocations on generation-recombination process in narrow- bandgap semiconductor”, Electron Technology 33, 518-528 (2000).
  • 27. E. Rosencher, V. Mosser, and G. Vincent, “Transient-current study of field-assisted emission from shallow levels in silicon., Phys. Rev. B29, 1135-1147 (1984).
  • 28. J.L. Harthe, “The three-dimensional Poole-Frenkel effect”, J. Appl. Phys. 39, 4871-4873 (1968).
  • 29. P.A. Martin, B.G. Streetman, and K. Hess, “Electric field enhanced emission from non-Coulombic traps in semiconductors”, J. Appl. Phys. 52, 7409-7415 (1981).
  • 30. W.T. Read, “Statistics of the occupation of dislocation acceptor centres”, Phil. Mag. 45, 1119-1128 (1954).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA2-0010-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.