PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Carrier transport in GaN single crystals and radiation detectors investigated by thermally stimulated spectroscopy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Solid State Crystals : Material Science and Applications (4ICSSC) and Polish Conference on Crystal Growth (7PCCG) ; (16-20.05.2004 ; Zakopane-Kościelisko, Poland)
Języki publikacji
EN
Abstrakty
EN
We investigated single crystals of GaN and thin film GaN radiation detectors by thermally stimulated currents (TSCs) and thermally stimulated depolarization (TSD) methods in order to characterize carrier transport properties as influenced by material defect structure. In thick GaN, no expressed structure of the TSC spectra was observed in the temperature range from 100 K up to 350 K that could be characteristic for thermal carrier generation from trap levels. The experimental facts imply that TSC spectra might be caused not by carrier generation from traps, but it could be due to thermal mobility changes. Therefore we had applied the numerical analysis by taking into account carrier scattering by ionized impurities and by phonons. It was found that mobility limited by ionized impurities varies as ~ T2.8 and lattice scattering causes the dependence ~ T -3.5. The highest mobility values were up to 1550 cm² /Vs at 148-153 K. Such high values indicate relatively good quality of the single GaN thick crystals. In high resistivity GaN detectors irradiated by high doses of high-energy neutrons and X-rays current, the instabilities were observed that could be caused by the change of carrier drift paths in a highly disordered mater. A model of carrier percolation transport is presented.
Twórcy
  • Semiconductor Physics Department and Institute of Materials Science and Applied Research Vilnius University, 9 Saulėtekio Ave., LT-2040 Vilnius, Lithuania
  • Semiconductor Physics Department and Institute of Materials Science and Applied Research Vilnius University, 9 Saulėtekio Ave., LT-2040 Vilnius, Lithuania
Bibliografia
  • 1. S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure bluelight-emitting diodes”, Appl. Phys. Lett. 64, 1687-1689 (1994).
  • 2. M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors”, J. Appl. Phys. 79, 7433-7473 (1996).
  • 3. I. Akasaki and H. Amano, “Crystal growth and conductivity control of group III Nitride semiconductors and their application to short wavelength light emitters”, Jap. J. Appl. Phys. 36, 5393-5408 (1997).
  • 4. G. Kavaliauskienė, V. Kažukauskas, V. Rinkevičius, J. Storasta, J.V. Vaitkus, R. Bates, V. O’Shea, and K.M. Smith, “Thermally stimulated currents in semi-insulating GaAs Schottky diodes and their simulation”, Appl. Phys. A . Mat. Sci. and Proc. 69, 415-420 (1999).
  • 5. J.G. Simmons and G.W. Taylor, “High-field isothermal currents and thermally stimulated currents in insulators having discrete trapping levels”, Phys. Rev. B 5, 1619-1629 (1972).
  • 6. G. Li, S.J. Chua and W. Wang, “The Hall mobility and its relationship to the persistent photoconductivity of undoped GaN”, Solid State Commun. 111, 659-663 (1999).
  • 7. T.T. Mnatsakanov, M.E. Levinshtein, L.I. Pomortseva, S.N. Yurkov, G.S. Simin, and M. Asif Khan, “Carrier mobility model for GaN”, Solid-State Electronics 47, 111-115 (2003).
  • 8. S. Nakamura, T. Mukai, and M. Senoh, “In situ monitoring and Hall measurements of GaN grown with GaN buffer layers”, J. Appl. Phys. 71, 5543-5549 (1992).
  • 9. D.M. Caughey, R.E. Thomas, Proc IEEE 55, 2192 (1967).
  • 10. K. Seeger. Semiconductor Physics. An Introduction. 8th edition, Springer, Berlin, 2002.
  • 11. B.K. Ridley, Quantum Processes in Semiconductors, Clarendon Press, Oxford, 1982.
  • 12. B. Pistoulet, P. Girard, and G. Hamamdjian, “Effect of potential fluctuations on the transport properties and the photoconductivity of compensated semiconductors. Application to semi-insulating GaAs”, J. Appl. Phys. 56, 2268-2283 (1984).
  • 13. B. Pistoulet, P. Girard, and G. Hamamdjian, “Effect of potential fluctuations on the transport properties and the photoconductivity of compensated semiconductors. Application to semi-insulating GaAs”, J. Appl. Phys. 56, 2268-2283 (1984).
  • 14. V. Kaûukauskas, .Influence of defect inhomogeneities on the Hall mobility and concentration in undoped GaAs., J. Appl. Phys. 84, 2053.2061 (1998).
  • 15. V. Kažukauskas, J. Storasta, and J.-V. Vaitkus, “Interaction of deep levels and potential fluctuations in scattering and recombination phenomena in semi-insulating GaAs”, J. Appl. Phys. 80, 2269-2278 (1996).
  • 16. D.C. Look, D.C Reynolds, W. Kim, O. Aktas, A. Botchkarev, A. Salvador, and I. Morkoc, “Deep-center hopping conduction in GaN”, J. Appl. Phys. 80, 2960-2963 (1996).
  • 17. H.M. Ng, D. Doppalapudi, T.D. Moustakas, N.G. Weimann, and L.F. Eastman, “The role of dislocation scattering in n-type GaN films”, Appl. Phys. Lett. 73, 821-823 (1998).
  • 18. M. Fehrer, S. Einfeldt, U. Birkle, T. Gollnik, and D. Hommel, “Impact of defects on the carrier transport in GaN”, J. Cryst. Growth 189-190, 763-767 (1998).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA2-0010-0025
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.