Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Solid State Crystals : Material Science and Applications (4ICSSC) and Polish Conference on Crystal Growth (7PCCG) ; (16-20.05.2004 ; Zakopane-Kościelisko, Poland)
Języki publikacji
Abstrakty
Anticipated performance of possible InP-based vertical-cavity surface-emitting lasers (VCSELs) for the third generation 1.55-um optical-fibre communication has been simulated with the aid of the comprehensive optical-electrical-thermal-gain self-consistent model. While the room-temperature (RT) pulse operation of the above VCSELs has been found to be reached without serious difficulties, their efficient RT continuous-wave operation does not seem to be possible because of inherently insufficient physical properties of the AIIIP phosphides. Therefore, as the final conclusion of this paper, we have to stress that, taking into consideration currently available technology, InP-based VCSELs cannot be recommended as laser sources for future long-wavelength optical-fibre communication systems.
Wydawca
Czasopismo
Rocznik
Tom
Strony
389--397
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
- Laboratory of Computer Physics, Institute of Physics, Technical University of Łódź 219 Wólczańska Str., 93-005 Łódź, Poland
autor
- Laboratory of Computer Physics, Institute of Physics, Technical University of Łódź 219 Wólczańska Str., 93-005 Łódź, Poland
autor
- Laboratory of Computer Physics, Institute of Physics, Technical University of Łódź 219 Wólczańska Str., 93-005 Łódź, Poland
Bibliografia
- 1. M. Osiński and W. Nakwaski, “Three-dimensional simulation of vertical-cavity surface-emitting semiconductor lasers”, in Vertical-Cavity Surface-Emitting Laser Diodes, Chapter 5, pp. 135-192, edited by Li and K. Iga, Springer, Berlin, 2003.
- 2. K. Streubel, S. Rapp, J. Andre, and J. Wallin, “Room-temperature pulsed operation of 1.5-µm vertical cavity lasers with an InP-based Bragg reflector”, IEEE Photon. Techn. Lett. 8, 1121-1123 (1996).
- 3. S. Rapp, J. Piprek, K. Streubel, J. Andre, and J. Wallin, “Temperature sensitivity of 1.54 µm vertical-cavity lasers with an InP-based Bragg reflector”, IEEE J. Quantum Electron. 33, 1839-1845 (1997).
- 4. S. Rapp, “Long-wavelength vertical-cavity lasers based on InP/GaInAsP Bragg reflectors”, Doctoral Thesis, KTH Stockholm, 1999.
- 5. J. Piprek, D.I. Babić, and J.E. Bowers, “Simulation and analysis of 1550 nm double-fused vertical-cavity lasers”, J. Appl. Phys. 81, 3382-3390 (1997).
- 6. K.A. Black, P. Abraham, N.M. Margalit, E.R. Hegblom, Y.-J. Chiu, J. Piprek, J.E. Bowers, and E.L. Hu, “Double- fused 1.5 µm vertical-cavity lasers with record high T0 of 132 K at room temperature”, Electron. Lett. 34, 1947-1949 (1998).
- 7. A. Karim, P. Abraham, D. Lofgreen, Y.-J. Chiu, J. Piprek, and J.E. Bowers, “Waferbonded 1.55 µm vertical-cavity lasers with continuous-wave operation up to 105°C”, Appl. Phys. Lett. 78, 2632-2633 (2001).
- 8. Y. Ohiso, H. Okamoto, Y. Itoh, K. Tateno, T. Tadokoro, H. Takenouchi, and T. Kurokawa, “1.55-µm vertical-cavity surface-emitting lasers with wafer-fused GaInAsP/InPGaAs/ AlAs DBRs”, Electron. Lett. 32, 1483-1484 (1996).
- 9. Y. Ohiso, C. Amano, Y. Itoh, H. Takenouchi, and T. Kurokawa, “Long-wavelength (1.55-µm) vertical-cavity lasers with InGaAsP/InP . GaAs/AlAs DBR’s by wafer fusion”, IEEE J. Quantum Electron. 34, 1904-1913 (1998).
- 10. L. Goldstein, C. Fortin, C. Starck, A. Plais, J. Jacquet, J. Boucart, A. Rocher and C. Poussou, “GaAlAs/GaAs metamorphic Bragg mirror for long-wavelength VCSEL’s”, Electron. Lett. 34, 268-270 (1998).
- 11. J. McEntee, “...while global optical-fibre market flatlines”, Fibre Systems 1, 7 (2004).
- 12. W. Ha, V. Gambin, M. Wistey, S. Bank, S. Kim, and J.S. Harris Jr., “Multiple-quantum-well GaInNAs-GaNAs ridge-waveguide laser diodes operating out to 1.4 µm”, IEEE Photonics Technology Letters 14, 591-593 (2002).
- 13. S. Bank, W. Ha, V. Gambin, M. Wistey, H. Yuen, L. Goddard, S. Kim, and J.S. Harris Jr., “1.5-µm GaInNAs(Sb) lasers grown on GaAs by MBE”, J. Cryst. Growth 251, 367-371 (2003).
- 14. K. Streubel, J. Wallin, G. Landgren, U. Ohlander, S.Lourdudoss, and K. Kjebon, “Importance of metalorganic vapour phase epitaxy growth conditions for the fabrication of GaInAsP strained quantum well lasers”, J. Cryst. Growth 143, 7-14 (1994).
- 15. H. Wenzel and H.-J. Wünsche, “The effective frequency method in the analysis of vertical-cavity surface-emitting lasers”, IEEE J. Quantum Electron. 33, 1156-1162 (1997).
- 16. P. Maćkowiak and W. Nakwaski, “Designing guidelines for possible continuous-wave-operating nitride vertical-cavity surface-emitting lasers”, J. Phys. D: Appl. Phys. 33, 642-653 (2000).
- 17. W. Nakwaski, “Simulation of optical phenomena in vertical- cavity surface-emitting lasers: I. Fundamental principles”, Opto-Electron. Rev. 8, 83-90 (2000).
- 18. R.P. Sarzała, P. Mendla, M. Wasiak, P. Mackowiak, M. Bugajski, and W. Nakwaski, “Comprehensive self-consistent three-dimensional simulation of an operation of the GaAs-based oxide-confined 1.3-µm quantum-dot (InGa)As/ GaAs vertical-cavity surface-emitting lasers”, Opt. Quantum Electron. 37, (2004). (in print)
- 19. S. Adachi, Physical Properties of III-V Semiconductor Compounds, Wiley, New York 1992.
- 20. http://www.ioffe.rssi.ru/SVA/NSM/Semicond
- 21. J. Piprek, “Electro-thermal analysis of oxide-confined vertical-cavity lasers”, Phys. Stat. Sol. (a) 188, 905-912 (2001).
- 22. J. Minch, S.H. Park, T. Keating, and S.L. Chuang, “Theory and experiment of InGaAsP and InGaAlAs long wavelength strained quantum-well lasers”, IEEE J. Quantum Electron. 35, 771-782 (1999).
- 23. A.P. Mozer, S. Hausser, and M.H. Pilkuhn, “Quantitative evaluation of gain and losses in quaternary lasers”, IEEE J. Quantum Electron. QE-21, 719-725 (1985).
- 24. G.P. Agrawal and N.K. Dutta, Long-Wavelength Semiconductor Lasers, Van Nostrand Reinhold Company, New York, 1986.
- 25. O. Gilard, “Theoretical study of radiation effects on GaAs/AlGaAs and InGaAsP/InP quantum-well lasers”, J. Appl. Phys. 93, 1772-1780 (2003).
- 26. J.M. Pikal, C.S. Menoni, and H. Temkin, “Carrier lifetime and recombination in long-wavelength quantum-well lasers”, IEEE J. Select. Topics Quantum Electron. 5, 613-619 (1999).
- 27. W. Nakwaski, “Thermal conductivity of binary, ternary, and quaternary III-V compounds”, J. Appl. Phys. 64, 159-166 (1988).
- 28. A. Karim, S. Bjorlin, J. Piprek, and J. Bowers, “Longwavelength vertical-cavity lasers and amplifiers”, IEEE J. Select. Topics Quantum Electron. 6, 1244-1253 (2000).
- 29. P. Maćkowiak, “Development of a structure of nitride vertical- cavity surface-emitting laser, its optimisation using self-consistent three-dimensional model of operation”, PhD Thesis Dissertation, Institute of Physics, Technical University of Łódź, 2002. (in Polish)
- 30. E.H. Li, “Material parameters for InGaAsP and InAlGaAs systems for use in quantum-wells structures at low and room temperatures”, Physica E5, 215-273 (2000).
- 31. S. Kakimoto and H. Watanabe, “Intervalence band absorption loss coefficients of the active layer for InP based long wavelength laser diodes”, J. Appl. Phys. 87, 2095-2097 (2000).
- 32. J. Taylor and V. Tolstikhin, “Intervalence band absorption in InP and related materials for optoelectronic device modeling”, J. Appl. Phys. 87, 1054-1059 (2000).
- 33. B. Sermage, H.J. Eichler, J.P. Heritage, R.J. Nelson, and N.K. Dutta, “Photoexcited carrier lifetime and Auger recombination in 1.3-µm InGaAsP”, Appl. Phys. Lett. 42, 259-261 (1983).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA2-0010-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.