PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quantitative mobility spectrum analysis (QMSA) in multi-layer semiconductor structures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Solid State Crystals : Material Science and Applications (4ICSSC) and Polish Conference on Crystal Growth (7PCCG) ; (16-20.05.2004 ; Zakopane-Kościelisko, Poland)
Języki publikacji
EN
Abstrakty
EN
For modern semiconductor heterostructures containing multiple populations of distinct carrier species, conventional Hall and resistivity data acquired at a single magnetic field provide far less information than measurements as a function of magnetic field. However, the extraction of reliable and accurate carrier densities and mobilities from the field-dependent data can present a number of difficult challenges, which were never fully overcome by earlier methods such as the multi-carrier fit, the mobility spectrum analysis of Beck and Anderson, and the hybrid mixed-conduction analysis. More recently, in order to overcome the limitations of those methods, several research groups have contributed to development of the quantitative mobility spectrum analysis (QMSA), which is now available as a commercial product. The algorithm is analogous to a fast Fourier transform, in that it transforms from the magnetic field B domain to the mobility ž domain. QMSA converts the field-dependent Hall and resistivity data into a visually-meaningful transformed output, comprising the conductivity density of electrons and holes in the mobility domain. In this article, we apply QMSA to both synthetic and real experimental data that are representative of modern semiconductor structures.
Twórcy
  • School of Electrical, Electronic and Computer Engineering, The University of Western Australia 35 Stirling Highway, Crawley WA 6009, Australia
autor
  • School of Electrical, Electronic and Computer Engineering, The University of Western Australia 35 Stirling Highway, Crawley WA 6009, Australia
Bibliografia
  • 1. M.C. Gold and D.A. Nelson, “Variable magnetic field Hall effect measurements and analyses of high purity Hg vacancy (p-type) HgCdTe”, J. Vac. Sci. Technol. A4, 2040 (1986).
  • 2. S.P. Tobin, G.N. Pultz, E.E. Krueger, M. Kestigian, K.K. Wong, and P.W. Norton, “Hall effect characterization of LPE HgCdTe P/n heterojunctions”, J. Electron. Mat. 22, 907 (1993).
  • 3. W.A. Beck and J.R. Anderson, “Determination of electrical transport using a novel magnetic field-dependent Hall technique”, J. Appl. Phys. 62, 541 (1987).
  • 4. J.R. Meyer, C.A. Hoffman, F.J. Bartoli, D.J. Arnold, S. Sivananthan, and J.P. Faurie, “Methods for magnetotransport characterization of IR detector materials”, Semicond. Sci. Technol. 8, 805 (1993).
  • 5. Z. Dziuba and M. Gorska, “Analysis of the electrical conduction using an iterative method”, J. Phys. III France 2, 110 (1992).
  • 6. J. Antoszewski, D.J. Seymour, L. Faraone, J.R. Meyer, and C.A. Hoffman, “Magneto-transport characterization using quantitative mobility spectrum analysis”, J. Electron. Mater. 24, 1255 (1995).
  • 7. J.R. Meyer, C.A. Hoffman, F.J. Bartoli, J. Antoszewski, L. Faraone, S.P. Tobin, P.W. Norton, C.K. Ard, D.J. Reese, L. Colombo, and P.K. Liao, “Advanced magneto-transport characterisation of LPE-grown HgCdTe by QMSA”, J. Electron. Mater. 25, 1157 (1996).
  • 8. J.R. Meyer, C.A. Hoffman, J. Antoszewski, and L. Faraone, “Quantitative mobility spectrum analysis of multicarrier conduction in semiconductors”, J. Appl. Phys. 81, 709 (1997).
  • 9. J. Antoszewski, J.M. Dell, L. Faraone, L.S. Tan, A. Raman, S.J. Chua, D.S. Holmes, J.R. Lindemuth, and J.R. Meyer, “Evaluation of III-V multilayer transport parameters using QMSA“, Mat. Sci. Eng. B44, 65 (1997).
  • 10. J.R. Meyer, C.A. Hoffman, F.J. Bartoli, J. Antoszewski, and L. Faraone, “Mobility spectrum analysis for magneticfield- dependent Hall and resistivity data”, US Patent Nr. 5,789,931 (1998).
  • 11. I. Vurgaftman, J.R. Meyer, C.A. Hoffman, D. Redfern, J. Antoszewski, L. Faraone, and J.R. Lindemuth, “Improved quantitative mobility spectrum analysis for Hall characterization”, J. Appl. Phys. 84, 4966 (1998).
  • 12. I. Vurgaftman, J.R. Meyer, C.A. Hoffman, S. Cho, J.B. Ketterson, L. Faraone, J. Antoszewski, and J.R. Lindemuth, “Quantitative mobility spectrum analysis (QMSA) for Hall characterization of electrons and holes in anisotropic bands”, J. Electron. Mater. 28, 548 (1999).
  • 13. J.R. Meyer, I. Vurgaftman, D.A. Redfern, J. Antoszewski, L. Faraone, and J.R. Lindemuth, “Improved quantitative mobility spectrum analysis of magnetic-field-dependent Hall and resistivity data”, US Patent Nr. 6,100,704 (2000), US Patent Nr. 6,100,704 (2000).
  • 14. J. Antoszewski, D. Redfern, L. Faraone, J. R. Meyer, I. Vurgaftman, and J. Lindemuth, “Comment on mobility spectrum computational analysis using a maximum entropy approach”, Phys. Rev. E69, 038701 (2004).
  • 15. G. Li, J. Antoszewski, W. Xu, N. Hauser, and C. Jagadish, “Study of subband electronic structure of Si δ-doped GaAs using magnetotransport measurements in tilted magnetic fields”, J. Appl. Phys. 79, 8482 (1996).
  • 16. Lakeshore Crotronics Ltd., www.lakeshore.com.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA2-0010-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.