PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

GaN grown in polar and non-polar directions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Solid State Crystals : Material Science and Applications (4ICSSC) and Polish Conference on Crystal Growth (7PCCG) ; (16-20.05.2004 ; Zakopane-Kościelisko, Poland)
Języki publikacji
EN
Abstrakty
EN
In this paper, defects formed in GaN grown by different methods are reviewed. Thin GaN films were grown on c-, m-, and a-planes on a number of substrates and typical defects as characterized by transmission electron microscopy are described. For polar epilayers grown on c-plane sapphire the typical defects are dislocations (edge, screw and mixed). The lowest dislocation density was obtained for homoepitaxial growth using molecular beam epitaxy (MBE) or hydride vapour phase epitaxy (HVPE). In these cases, the core structure of screw dislocations were studied in detail. In both cases, the cores are full. In the layers grown by HVPE the dislocations are decorated by pinholes stacked on top of each other. These pinholes are empty inside and their formation is attributed to impurities (oxygen) present in these layers. In these layers Ga-rich cores have been found. These were not observed in the layers grown by MBE on the top of the HVPE templates. Epilayers grown in non-polar directions (m- or a-plane) have a high density of planar defects (stacking faults) terminated by partial dislocations. Only low energy faults were found. The majority of these faults are formed at the interface with the substrate and propagate to the sample surface.
Twórcy
  • Lawrence Berkeley National Laboratory, 62/203, Berkeley, CA 94720, USA
autor
  • Lawrence Berkeley National Laboratory, 62/203, Berkeley, CA 94720, USA
autor
  • Lawrence Berkeley National Laboratory, 62/203, Berkeley, CA 94720, USA
Bibliografia
  • 1. J.I. Pankove, E.A. Miller, and J.E. Berkeyheiser, RCA Rev. 32, 383 (1971).
  • 2. S. Yoshida, S. Misawa, and S. Gonda, J. Vac. Sci. Technol. B1, 250 (1983).
  • 3. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Appl. Phys. Lett. 48, 353 (1986).
  • 4. I. Akasaki, H. Amano, M. Kito, and K. Hiramatsu, J. Lumin. 48/49, 666 (1991).
  • 5. S. Nakamura, M. Senoh, and T. Mukai, J. Appl. Phys. 30, L1709 (1991).
  • 6. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushida, Y. Sugimoto, and H. Kiyogu, Appl. Phys. Lett. 70, 1417 (1997).
  • 7. B.W. Lim, Q.C. Chen, J.Y. Yang, and M.A. Khan, Appl. Phys. Lett. 68, 3761 (1996).
  • 8. T. Nishida and N. Kobayashi, Phys. Stat. Sol. A188, 113 (2001).
  • 9. F. Bernardini and V. Fiorentini, Phys. Rev. B57, 9427 (1998).
  • 10. S. Ruvimov, Z. Liliental-Weber, H. Amano, and I. Akasaki, MRS Proc. 482, 387 (1998).
  • 11. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kikyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, Jap. J. Appl. Phys. 36, L1568 (1997).
  • 12. F.C. Frank, Acta Cryst. 4, 497 (1951).
  • 13. Z. Liliental-Weber, Y. Chen, S. Ruvimov, and J. Washburn, Phys. Rev. Lett. 79, 2835 (1997).
  • 14. I. Arslan and N.D. Browning, Phys. Rev. Lett. 91, 165501 (2003).
  • 15. A. Thust, W.M.J. Coene, M. Op De Beeck, and D. Van Dyck, Ultramicroscopy 64, 211 (1996).
  • 16. M.A. O’Keefe, E.C. Nelson, Y.C. Wang, and A. Thust, Phil. Mag. B81, 1861.1878, (2003).
  • 17. J. Elsner, R. Jones, P.K. Sitch, V.D. Porezag, M. Elstner, Th. Frauenheim, M.I. Heggie, S. Öberg, and P.R. Briddon, Phys. Rev. Lett. 79, 3672 (1997).
  • 18. Z. Liliental-Weber, D. Zakharov, J. Jasinski, M.A. O’Keefe, and H. Morkoc, Microscopy and Microanalysis 10, 47.54, (2004).
  • 19. J. Jasinski and Z. Liliental-Weber, J. Electr. Mat. 31, 429 (2002).
  • 20. D.C. Look, J.R. Sizelove, J. Jasinski, Z. Liliental-Weber, K. Saarinen, S.S. Park and J.H. Han, Mat. Res. Symp. Proc. 743, L10.1.1 (2003).
  • 21. I. Grzegory, J. Jun, M. Bockowski, St. Krukowski, M. Wroblewski, B. Lucznik, and S. Porowski, J. Phys. Chem. Solids 56, 639 (1995).
  • 22. Z. Liliental-Weber, C. Kisielowski, S. Ruvimov, Y. Chen, J. Washburn, I. Grzegory, M. Bockowski, J. Jun, and S. Porowski, J. Electr. Mat. 25, 1545 (1996).
  • 23. J.M. Baranowski, Z. Liliental-Weber, K. Korona, K. Pakula, R. Stepniewski, A. Wysmolek, I. Grzegory, G. Novak, S. Porowski, B. Monemar, and P. Bergman, Mater. Res. Soc. Symp. 449, 393 (1997).
  • 24. Z. Liliental-Weber, J. Jasinski, and J. Washburn, J. Crystl. Growth 246, 259-270 (2002).
  • 25. P. Waltereit, O. Brandt, M. Ramsteiner, A. Trampert, H.T. Grahn, J. Menniger, M. Reiche, R. Uecker, P. Reiche, K.H. Ploog, Physica Status Solidi A180, 133. (2000).
  • 26. P. Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K.H. Ploog, Nature 406, 865 (2000).
  • 27. E. Kuokstis, C.Q. Chen, M.E. Gaevski, W.H. Sun, J.W. Yang, G. Simin, M. Asif Khan, H.P. Maruska, D.W. Hill, M.C. Chou, J.J. Gallagher, B. Chai, Appl. Phys. Lett. 81, 4130 (2002).
  • 28. J. Jasinski, Z. Liliental-Weber, H.P. Maruska, B.H. Chai, D.W. Hill, M.M.C. Chou, J.J. Gallagher, and S. Brown, Mat. Res. Soc. Symp. Proc. 764, C6.6 (2003).
  • 29. D.N. Zakharov, Z. Liliental-Weber, B. Wagner, Z.J. Reitmeier, E.A. Preble, and R.F. Davis, work in prep. for publ.
  • 30. T.S. Zheleva, O.H. Nam, M.D. Bremser, and R.F. Davis, Appl. Phys. Lett. 71, 2473 (1997).
  • 31. D. Kaplonek, S. Keller, R. Ventury, R.D. Underwood, P. Kozodoy, S.P. Den Baars, and U.K. Mishra, Appl. Phys. Lett. 71, 1204 (1997).
  • 32. J. Park, P.A. Grudowski, C.J. Eitingm, and R.D. Dupuis, Appl. Phys. Lett. 73, 333 (1998).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA2-0010-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.