PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Analiza stałoprądowa układów zawierających tranzystory MOS z krótkim kanałem

Identyfikatory
Warianty tytułu
EN
DC analysis of circuits containing short-channel MOS transistors
Konferencja
International Conference of Mixed Design of Circuits and Systems - MIXDES 2003
Języki publikacji
PL
Abstrakty
PL
Rozpatrywane są fundamentalne problemy analizy i projektowania układów elektronicznych o wielu rozwiązaniach DC, zawierających tranzystory MOS z krótkim kanałem. Problemy te dotyczą wyznaczania wszystkich rozwiązań DC oraz charakterystyk typu wejście-wyjście. Opracowano dwuetapową procedurę, polegającą na wstępnym wyznaczeniu rozwiązań z wykorzystaniem "the n-th power law model" tranzystorów MOS oraz algorytmu sukcesywnego zawężania, podziału i eliminacji, a następnie uściśleniu tych rozwiązań, stosując kontrolowaną symulację programem SPICE z użyciem modelu BSIM.
EN
Circuits containing short-channel MOS transistors, having multiple DC solutions, are analyzed in this paper. The basic question how to find efficiently all the DC solutions and input-output characteristics are considered. A two-part procedure is described for computing all the DC solutions. This procedure exploits the n-th power law model of MOS transistors and the algorithm of successive contraction, division and elimination to find preliminary solutions, and next the BSIM model to correct them using controlled SPICE simulations.
Rocznik
Strony
30--33
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
  • Politechnika Łódzka, Wydział Elektrotechniki i Elektroniki
autor
  • Politechnika Łódzka, Wydział Elektrotechniki i Elektroniki
Bibliografia
  • 1. Takahashi N., Nishi T.: Equilibrium points of mutually coupled symmetrical neural networks. Proc. ECCTD’93, pp. 1059-1064, 1993.
  • 2. Chua L. O., Ying R.L. P.: Finding all solutions of piecewise-linear circuits. Int. Journal Cir. Theor. Appl., vol. 10, pp. 201-229, 1982.
  • 3. Huang Q., Liu R.: A simple algorithm of finding all solutions for piecewise-linear networks. IEEE Trans. Cir. Sys., vol. 36, pp. 600-609, 1989.
  • 4. Nishi T.: An efficient method to find all solutions of piecewise-linear resistive circuits. Proc. ISCAS’89, pp. 2052-2055, 1989.
  • 5. Pastore S., Premoli A.: Polyhedral elements: A new algorithm for capturing all the equilibrium points of piecewise-linear circuits. IEEE Trans. Cir. Syst., vol. 40, pp. 124-132,1993.
  • 6. Pastore S., Premoli A.: Finding all DC solutions of nonlinear resistive circuits by exploring both polyhedral and rectangular circuits. IEE Proc.-Circuits Devices Syst., vol. 144, pp. 17-21, 1997.
  • 7. Vandenberghe L., Moor B. L., Vandewalle J.: The generalised linear complementarity problem applied to the complete analysis of resistive piecewise-linear circuits. IEEE Trans. Cir. Syst., vol. 36, pp. 1382-1391, 1989.
  • 8. Kolev L. V., Mladenov V. M.: An interval method for finding all operating points of non-linear resistive circuits. Int. Journal Cir. Theor. Appl., vol. 18, pp. 257-267 1990.
  • 9. Tadeusiewicz M., Głowienka K.: A contraction algorithm for finding all the DC solutions of piecewise-linear circuits. Journal Cir. Sys. Comp., vol. 4, pp. 319-336, 1994.
  • 10. Tadeusiewicz M., Głowienka K.: An algorithm for finding all operating points of electronic circuits containing intricate models of transistors. Proc. ECCTD'95, pp. 127-130. 1995.
  • 11. Tadeusiewicz M.: DC analysis of circuits with idealized diodes considering reverse bias breakdown phenomenon. IEEE Trans. Cir. Sys., vol. 44, pp. 312-326, 1997.
  • 12. Tadeusiewicz M., Halgas S.: An effective algorithm for finding all the DC solutions of MOS transistor circuits represented by original polynominal nonlinearites. Proc, of ECCTD’99, pp. 467-470, 1999.
  • 13. Kolev L. V.: An efficient interval method for global analysis of non-linear resistive circuits. Int. Journal Cir. Theor. Appl., vol. 26, pp. 81-92, 1998.
  • 14. Yamamura K.: Interval solution of nonlinear equations using linear programming. Proc. Int. Symp. Cir. Syst., Hong Kong, pp. 837-840, 1997.
  • 15. Yamamura K., Oshima T.: Finding all solutions of piecewise-linear resistive circuits using linear programming. IEEE Trans. Cir. Syst., vol. 45, pp. 434-445, 1998.
  • 16. Tadeusiewicz M., Jagocki M., Halgas S.: Improvement of the sign test for finding all the DC solutions of piecewise-linear circuits. Int. Journal Cir. Theor. Appl., vol. 26, pp. 531-538, 1998.
  • 17. Tadeusiewicz M., Halgas S.: Finding all the DC solutions of a certain class of piecewise-linear circuits. Journal Cir. Syst. Signal Processing, vol. 18, pp. 89-110, 1999.
  • 18. Tadeusiewicz M., Halgas S.: DC analysis od circuits containing short- -channel MOS transistors, Proc. 10,h Int. Conf. Mixed Des. Int. Cir. Syst., MIXDES’03, pp. 421-426, 2003.
  • 19. Tadeusiewicz M., Halgas S.: An algorithm for finding all the DC solutions of short-channel MOS transistor circuits. 7-th IEEE International Conference on Electronics, Circuits and Systems, Jounieh, Lebano, Conference Proceedings, pp. 924-927, 2000.
  • 20. Tadeusiewicz M., Halgas S.: Finding all the DC solutions of MOS transistor circuits described by original nonlinear equations. Kwartalnik Elektroniki i Telekomunikacji, 46, z 3, pp. 281-297, 2000.
  • 21. Tadeusiewicz M., Halgas S.: An improved algorithm for finding all the DC solutions of MOS transistor circuits. Kwartalnik Elektroniki i Telekomunikacji, 48, z 1, pp. 7-17, 2003.
  • 22. Tadeusiewicz M., Halgas S.: Short-channel MOS transistor circuits: finding all the DC solutions and input-output characteristics. Kwartalnik Elektroniki i Telekomunikacji, 48, z 4, pp. 517-540, 2003.
  • 23. Kuh E.S., Hajj I.N.: Nonlinear circuit theory: resistive network. Proc. IEEE, vol. 59, no 3, pp. 340-355, 1971.
  • 24. Chao K., Sae s R.: Continuation methods in circuits analysis. Proc. IEEE, vol. 65, no 8, pp. 1187-1194, 1977.
  • 25. Yun C.W., Chao K.S.: Simple solutions curves of non-linear resistive networks. Int. Journal Cir. Theor. Appl., vol. 11, pp. 47-55, 1983.
  • 26. Ushida A., Chua L. O.: Tracing solution curves of nonlinear equations with sharp turning points. Int. Journal Cir. Theor. Appl., vol. 12, pp. 1-12, 1984.
  • 27. Chua L. O., Deng A. C.: Canonical piecewise linear analysis: Part II - tracing driving-point and transfer characteristics. IEEE Trans. Cir. Syst., vol. 32, pp. 417-444, 1985.
  • 28. Huang Q., Liu R.: A new efficient algorithm for analysis of piecewise- -linear resistive circuits (driving-point and transfer characteristic plots). IEEE ISCAS’89, pp. 2169-2172, 1989.
  • 29. Sakurai T., Newton A. R.: A simple MOSFET model for circuit analysis. IEEE Trans, on Electron Dev., vol. 38, pp. 887-891 1991.
  • 30. Sakurai T., Newton A. R.: Delay analysis of series-connected MOSFET circuits. IEEE Journal Solid-State Cir., vol. 26, pp. 122-131, 1991.
  • 31. Chua L. O.: Introduction to nonlinear network theory. McGraw_Hill, 1969.
  • 32. Ogorzałek M.J.: Multivalued characteristics in electronic circuits: A unifying approach. IEEE Trans, on Cir. and Syst.-ll: Analog and Digital Signal Processing, August, vol. 47, pp. 726-735, 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA2-0009-0036
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.