PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of high-accuracy time-resolved laser spectroscopy to the study of diffusion-controlled triplet-triplet annihilation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The kinetics of the diffusion-controlled triplet-triplet annihilation of anthracene was investigated with the time-resolved laser spectroscopy. The analysis of the decays of delayed fluorescence with the standard Smoluchowski model leads to an artificial dependence of the annihilation radius from the delay (starting point of evaluation). The intuitive-empirical modification of the so-called short-time term in Smoluchowski equation (based on the treatment of the triplet-triplet annihilation as a non-Fickian diffusion) is proposed. A brief comparison is presented between standard Smoluchowski and modified models for anthracene. The limits of the approximation used are discussed and the way of further progress is suggested.
Twórcy
autor
  • Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
  • Institute of Physical Chemistry, Polish Academy of Sciences, 44/52 Kasprzaka Str., 01-224 Warsaw, Poland
autor
  • Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
Bibliografia
  • 1. C.A. Parker, “Triplet state processes in fluid solutions”, Ber. Bunsenges. Phys. Chemie 73, 764-772 (1969).
  • 2. B. Nickel, H.E. Wilhelm, and C.P. Jänsch, “Effect of the Förster energy transfers S1 + S1 → S0 + Sn and S1 + T1 → S0 + Tn on the time dependence of the delayed fluorescence from aromatic compounds: anti-Smoluchowski and Smoluchowski temporal behaviour”, Opt. & Spectr. 83, 541-556, (1997).
  • 3. M. von Smoluchowski, “Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen”, Z. Phys. Chem. 92, 129-168 (1917).
  • 4. F.C. Collins and G.E. Kimball, “Diffusion-controlled reaction rates”, J. Colloid. Sci. 4, 425-437 (1949).
  • 5. H. Wilhelm, Thesis “Anti-Smoluchowski-Zeitverlauf der verzögerten Fluoreszenz aromatischer Verbindungen”, Cuvillier Verlag Göttingen, p. 6, Göttingen, 1995, C. Jänsch, Thesis “Anwendung von Smoluchowskis Theorie auf die Kinetik der diffusionskontrolierten Triplett-Triplett-Annihilation aromatischer Verbindungen”, Cuvillier Verlag Göttingen, p. 2, Göttingen, 1997.
  • 6. J. Saltiel and B.W. Atwater, “Spin-statistical factors in diffusion-controlled reactions”, Adv. Photochem. 14, 1-90 (1988).
  • 7. B. Dick and B. Nickel, “Accessibility of the lowest quintet state of organic molecules through triplet-triplet annihilation; an INDO CI study”, Chem. Phys. 78, 1-16 (1983).
  • 8. D.L. Dexter, “A theory of sensitized luminescence in solids”, J. Phys. Chem. 21, 836-850 (1953).
  • 9. G. Wilemski and M. Fixman, “General theory of diffusion-controlled reactions”, J. Chem. Phys. 58, 4009-4019 (1973).
  • 10. P.R. Butler and M.J. Piling, “Long range mechanism for the temperature dependence of the ratio of delayed monomer and delayed excimer fluorescence following triplet-triplet annihilation in liquids”, J. Chem. Soc. Faraday II 73, 886-894 (1977).
  • 11. J.P. Pilling and S.A. Rice, “Theoretical model for diffusion controlled reactions of solvated electrons, incorporating a tunnelling mechanism”, J. Chem. Soc. Faraday II 71, 1563-1571 (1975), J.P. Pilling and S.A. Rice, “Long range energy transfer by dipole-dipole and exchange interactions in rigid media and in liquids”, J. Chem. Soc. Faraday II 72, 1792-801 (1976).
  • 12. R.M. Noyes, “Effects of diffusion rates on chemical kinetics”, Prog. React. Kinet. 1, 129-160 (1961).
  • 13. A.V. Barzykin, K. Seki, and M. Tachiya, “Kinetics of diffusion-assisted reactions in microheterogeneous systems”, Advances in Colloids and Surface Science 89/90, 47-140 (2001).
  • 14. S.J. Huang, C.J. Durning, and B.D. Freeman, “Modelling weakly non-linear two-stage sorption kinetics in glassy polymer films”, J. Membrane Science 143, 1-11 (1998).
  • 15. M.S. Vicente and J.C. y Gottifredi, “Effect of volume changes due to absorption in polymer membranes”, J. Membrane Science 169, 249-254 (2000).
  • 16. Chen, B. Han, J. Li, T. Shang, J. Zou, and W. Jiang, “A new model on the diffusion of small molecule penetrants in dense polymer membranes”, J. Membrane. Science 187, 109-118 (2001)
  • 17. H. Kuthan, “A mathematical model of singlet target site location by Brownian movement in subcellular compartments”, J. Theor. Biol. 221, 79-87 (2003).
  • 18. R. Collins, “Mathematical modelling of controlled release from implanted drug-impregnated monoliths”, Pharmaceutical Science and Technology Today 1, 269-276 (1998).
  • 19. A.C. Dubreuil, F. Doumenec, B. Guerrier, D. Johannsmann, C. Allain, “Analysis of solvent diffusion in glassy polymer films using a set of inversion method”, Polymer 44, 377-387 (2003).
  • 20. J. Jasny, B. Nickel and P. Borowicz, “Wavelenght- and temperature-dependent measurement of the refractive indices”, J. Opt. Soc. Arn. B. 21, 729-738 (2004).
  • 21. E.G. Meyer and B. Nickel, “Diffusion coefficients of aromatic hydrocarbons in their lowest triplet state: anthracene in hexane, octane, hexadecane, perfluorohexane, and methylcyclohexane, pyrene and 9,10-diphenylanthracene in hexane”, Z. Naturforsch. 35A, 503-520 (1980).
  • 22. A.A. Ruth, B. Nickel, and H. Lesche, “Temperature dependence of viscosity and density of glass-forming alkenes”, Zeitschrift für Physikalische Chemie 175, 91-108 (1992).
  • 23. V.C. Sinclair, J. Monteach Robertson, and A. McL. Mathieson, “The crystal and molecular structure of anthracene. II. Structure investigation by the triple Fourier series method”, Acta Cryst. 3, 251-256 (1950).
  • 24. A. Bondi, “Van der Waals volumes and radii”, J. Phys. Chem. 68, 441-451 (1964)
  • 25. W. Liptay, J. Becker, and D. Wehning, W. Lang, and Z.O. Burkhard, “The determination of molecular quantities from measurements on macroscopic systems II. The determination of electric dipole moments”, Z. Naturforsch. 37A, 1396-1408 (1982).
  • 26. K. Rotkiewicz and Z.R. Grabowski, “Excited states of aminoanthracenes. An experimental approach to electron density distribution”, Trans. Faraday Soc. 65, 3263-3278 (1969).
  • 27. J.T. Edward, “Molecular volumes and the Stokes-Einstein equation”, J. Chem. Educ. 47, 261-270 (1970).
  • 28. P.R. Butler and M.J. Pilling, “Long range quenching of triplet phenantrene by copper ions in the liquid phase”, Chem. Phys. 39, 33-36 (1979).
  • 29. P.R. Butler and M.J. Pilling, “The breakdown of Förster kinetics in low viscosity liquids. An approximate analytical form for the time-dependent rate constant”, Chem. Phys. 41, 239-243 (1979).
  • 30. J.B. Birks, Photophysics of Aromatic Molecules, p. 381, Wiley-Interscience, London, 1970.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA2-0009-0027
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.