PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic Problem Formulation for Shape Memory Alloys

Identyfikatory
Warianty tytułu
Konferencja
International Conference on Modelling in Mechatronics (9 ; 02-04.09.2004 ; Kazimierz Dolny, Poland)
Języki publikacji
EN
Abstrakty
EN
The main goal of the paper is the formulation of three-dimensional constitutive relations of shape memory alloys (SMAs). We will propose a rheological model of such material providing a simple illustration of physical equations. Using this model we will introduce an additional variable describing the strain state. The equation we formulate can be used in dynamic analysis of structures. The proposed methods involves notions of non-smooth mechanics.
Rocznik
Strony
113--118
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
  • Warsaw University of Technology, Institute of Vehicles
autor
  • Warsaw University of Technology, Institute of Structural Mechanics
Bibliografia
  • [1] Auricchio, F., Sacco, E., 1997, A one-dimensional model for superelastic shape-memory alloys with different elastic properties between austenite and martensite, Int. J. Non-Linear Meclianics, 32(6), 1101-1114.
  • [2] Auricchio, F., Sacco, E., 1997, A temperature-dependent beam for shape memory alloys: constitutive modelling, finite element implementation and numerical simulations, Comput. Metliods Appl. Mech. Engrg., 174, 171-190.
  • [3] Bojarski, Z., Morawiec, H., 1989, Metale z pamięcią kształtu, Warszawa, PWN.
  • [4] DesRoches, R., Delemond, M., 2002, Seismic retrofit of simply supported bridges using shape memory alloys, Engineering Structures, 24, 325-332.
  • [5] Funakubo, H., 1986, Shape Memory Alloys, New York, Gordon&Breach Science Publishers.
  • [6] Gałkowski, Z., Grzesikiewicz, W., 2001, Verification of elastic-dissipate features of the SMA materiał, VIII Séminaire Franco-Polonais en Mécanique, Warszawa, 149-158.
  • [7] Govindjee, S., Hall, G., 2000, A computational model for shape memory alloys, Int. J. Solids Structures, 37, 735-760.
  • [8] Huang, W., 1999, “Yield” surfaces of shape memory alloys and their applications, Acta Metallurgica, 47(9), 2769-2776.
  • [9] Lagoudas, D.C., Ravi-Chandar, K., Sarh, K., Popov, P., 2003, Dynamie loading of polycrystalline shape memory alloy rod, Meclianics of Materials, 35, 689-716.
  • [10] Lammering, R., Schmidt, I., 2001, Experimental investigations on the damping capacity of NiTi components, Smart Materials and Structures, 10. 853-859.
  • [11] Lubliner, J., Auricchio, F., 1996, Generalized plasticity and shape-memory alloys, Int. J. Solids Structures, 33(7), 991-1003.
  • [12] Masud, A., Panahandeh, M., Auricchio, F., 1997, A finite-strain finite element model for the pseudoelastic behaviour of shape memory alloys, Comput. Metliods Appl. Mech. Engrg., 148, 23-37.
  • [13] McNaney, J.M., Imbeni, V., Jung, Y., Papadopoulos, P., Ritchie, R.O., 2003, An experimental study of the superelastic effect in a shape-memory Nitinol alloy under biaxial loading, Meclianics of Materials, 35, 969-986.
  • [14] Peng, X., Han, Y., Huang, S., 2000, A mixture theory based constitutive model for SMA, Meclianics Research Communications, 27(1), 21-28.
  • [15] Yan Humbeeck, J., 1999, Non-medical applications of shape memory alloys, Materials Science and Engineering, A273-275, 134-148.
  • [16] Wilde, K., Gardoni, P., Fujino, Y., 2000, Base isolation system with shape memory alloy device for elevated highway bridges, Engineering Structures, 22, 222-229.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA2-0008-0223
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.