PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Elektronika wysokotemperaturowa

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
High temperature electronics
Języki publikacji
PL
Abstrakty
PL
Typowy sprzęt elektroniczny jest projektowany do pracy w maksymalnym zakresie temperatur -55C do 125C, nazywany zakresem militarnym (ang. "military range"). W pewnych sytuacjach występuje jednak konieczność wprowadzenia aparatury elektronicznej do otoczenia o znacznie wyższej temperaturze lub też może wystąpić wysoka temperatura wewnątrz przyrządów elektronicznych wywołana efektem samonagrzewania. Stało się to impulsem do zainicjowania badań nad możliwościami konstrukcji takiej aparatury, a ich efektem było wyodrębnienie nowej dziedziny elektroniki, nazwanej "elektroniką wysokotemperaturową" (lub skrótowo HTE od ang "High-temperature electronics"). W pracy skupiono się na przedstawieniu specyfiki tej nowej dziedziny elektroniki. W szczególności, co należy rozumieć pod terminem elektronika wysokotemperaturowa, jakie obszary aplikacji ona obejmuje i jakie jest jej miejsce na rynku. Przedstawiono także jakie nowe problemy są z nią związane i jak one mogą być rozwiązywane, skupiając się w tym przypadku na materiałach półprzewodnikowych, które są kluczowym elementem rozwoju HTE.
EN
The standard electronics equipment is designed to work within the temperature range called the "military range". For some cases, however, one needs to introduce electronics into the environment with higher temperature or the higher inside temperatures caused by the selfheating are required. These needs had became the impulse to start the research how to manufacture such an equipment, which resulted in creation of the new field of electronics called "high temperature electronics" (HTE). The paper is aimed at the introduction of the HTE specifity. In particularly, what this term means, which kinds of application it covers and which place it has on the market. New problems created by the HTE applications and how they can be solved are presented as well, but in this case the interest is limited to the semiconductor materials that are of crucial importance for HTE development.
Rocznik
Strony
225--245
Opis fizyczny
Bibliogr. 63 poz.
Twórcy
autor
  • Instytut Elektroniki, Politechniki Łódzkiej, 00-924 Łódź, ul. Stefanowskiego 18/22
Bibliografia
  • 1. T. Mahefkey: High Temperature (500-600K) Electronics Thermal Management. Sym. Space Nuclear Power and Propulsion, Albuquerque 1995, pp. 917-929.
  • 2. P. L. Dreike, D. M. Fleetwood, D. B. King, D. C. Sprauer, T. E. Zipperian: An Overview of High-temperature Electronic Device Technologies and Potential Applications. IEEE Trans. Comp. Packaging and Mnuf. Tech., vol. 17, 1994, pp. 594-609.
  • 3. W. C. Nieberding, J. A. Powell: High-Temperature Electronic Requirements in Aeropropulsion Systems. IEEE Trans. Ind. Electron., 1982, pp. 103-106.
  • 4. R. F. Jurgens: High-Temperature Electronics Applications in Space Exploration. IEEE Trans. Ind. Electron., 1982,pp. 107-111.
  • 5. C. J. Scozzie, J. M. Mc Garrity, J. Blackburn, W. M. De Lancey: Silicon Carbide FETs for High Temperature Nuclear Environments. IEEE Trans. Nuclear Science, vol. 43, 1996, pp. 1642-1648.
  • 6. HITEN, the European High Temperature Electronics Network, Internet page
  • 7. G. A. Bennet: Thermal Protection Methods for Electronics in Hot Wells, in High Temperature Electronics, Ed. Kirschman R., IEEE Press, 1998, pp. 111-124.
  • 8. T. Fallet, G. Forre, J. Gakkestad: Oil-well applications: instrumentation of deep hot holes", in High Temperature Electronics, Ed. Willander M., Hartnagel H. L., Chapman & Hall, 1997, chapter 3, pp. 37-63
  • 9. J. Lasseur: Oil and gas applications scenarios. I European Conf. High Temp. Electronics, Madrit Nov. 1993, paper V.3
  • 10. N. H. Sanders: Present and Future Needs in High Temperature Electronics for the Well Logging Industry. Conf. High. Temp. Electronics, Tucson Mar. 1981 , pp. 17-18
  • 11. A. F. Venerusa: High Temperature Electronics for Geothermal Energy., IEEE Circuit and Syst. Mag., vol. 1, nr.3, 1979, pp. 11-17.
  • 12. A. F. Veneruso: High temperature technology-potential, promise and payoff. Electro'80, Boston May 1980, paper 16/0
  • 13. M. A. Tamor: High-Temperature Electronics for Automobiles, in High Temperature Electronics, Ed. Kirschman R. IEEE Press, 1998, pp. 153-160
  • 14. J. C. Erskine, R. G. Carter, H. L. Fields, J. A. Hearn, J. M. Himelick, J. A. Yurtin: High Temperature Automotive Electronics: An Overview. Int. High-Temp. Electron. Conf., Albuquerque 1996, vol.1, pp. XIII.21-31
  • 15. J. Sparks: High Temperature Electronics for Distributed Control. Int. High-Temp. Electron. Conf., Albuquerque 1996, vol. 1, pp. XIII.7-12
  • 16. K. R. Willey, D. C. Dening: The characterisation of high temperature electronics for future aircraft engine digital electronic control systems. American Control Conf., Atlanta 1988, pp. 1831-1836.
  • 17. D. Christenson: High temperature electronics for supersonic aircraft. High-Temp. Electron. Conf., Albuquerque 1991, pp. 245-264
  • 18. Ch. M. Carlin, J. K. Ray: The Requirements for High Temperature Electronics in a Future High Speed Civil Transport (HSCT). High-Temp. Electron. Conf., Albuquerque 1996, vol. 1, pp. I.19-26
  • 19. J. Ott: HSCT research defines weight, fuel issues. Aviation Week & Space Technology, 1988, pp. 88-90.
  • 20. C. A. Bedoya: Fly-by-wire to fly-by-light issues and solutions. Proc. SPIE, vol.2840, 1996, pp. 148-156.
  • 21. F.Y. Thome, D. B. King: Applications, Needs, and Alternatives, in High Temperature Electronics, Ed. Kirschman R. IEEE Press, 1998, pp. 97-110.
  • 22. M. M. Hintze: High Temperature Electronics Utilisation for Present and Future Nuclear Instrumentation. Conf. High Temp. Electronics, Tucson 1988, p. 11.
  • 23. D. B. King, S. M. Luker, R. Ryan: Multiplexer/amplifier Test Results for SP-100., Symp. Space Nuclear Power Systems, Albuquerque 1991, pp.1100-1104.
  • 24. W. R. Cross, D. R. Lesley: Self-contained Microcircuity Probe Acquires and Records Food-process Temperature Data. Food Technology, vol.39, nr.12, 1985, pp. 36-41.
  • 25. Sensor Packaged for High Temperature. Electronic Packaging and Production, vol.26, nr. 11, 1986, p. 13.
  • 26. M. Migitaka, K. Kurachi: Silicon Integrated Injection Logic Operating up to 454°C and its application. Int. High Temp. Electron. Conf., Charlotte 1994, pp. II.27-32.
  • 27. M. Magitaka, H. Naito; Progress of High-Temperature Silicon Integrated Logic. Int. High Temp. Electron. Conf., Albuquerque 1996, pp. XI.15-20.
  • 28. J. B. Kitterick: Very Thin Silicon-on-insulator Devices for CMOS at 500°C. Int. High Temp. Electronics Conf., Albuquerque 1991, pp. 37-41
  • 29. J. L. Prince, D. B. Bullard, K. R. Infinger, J. W. Lathrio: High Temperature MOSFET Characteristics for Geothermal Instrumentation. IEEE SOUTHEASTCON'78, Atlanta 1978, pp. 376-379.
  • 30. L. J. Palkuti, A. C. Macpherson, J. L. Prince, A. S. Glista: Characteristics of Devices and Integrated Circuits at 260°C for Navy Applications. Electron. Components Conf., Chwrry Hill 1979, pp. 47-54.
  • 31. L. J. Palkuti, J. L. Prince, A. S. Glista: Integrated Circuits at 260°C for Aircraft Engine-control Applications. IEEE Trans. Components Hybrid and Manufacturing Technology, vol. CHMT-2, 1979, pp. 405-412.
  • 32. B. L. Draper, W. Palmer: Extension of High-temperature Electronics. IEEE Trans. Components Hybrid and Manufacturing Technology, vol. CHMT-2, 1979, pp. 399-404.
  • 33. J. L. Prince, E. A. Draper, E. A. Rapp, J. N. Kronberg, L. T. Fitch: Performance of Digital Integrated Circuit Technologies al Very-high Temperatures IEEE Trans. Components Hybrid and Manufacturing Technology, vol. CHMT-2, 1979, pp. 571-579.
  • 34. L. J. Ragonese, D. C. Dening, W. L. Morris: High Temperature Extended Range Operation for Integrated Injection Logic Circuits. ELECTRO'80, Boston 1980, paper 16/3.
  • 35. F. S. Shoucair: Design Considerations in High-temperature Analog CMOS Integrated Circuirs. IEEE Trans. Components Hybrid and Manufacturing Technology, vol. CHMT-9, 1986, pp. 242-251.
  • 36. Y. Arimoto: High-temperature Operation of n-MOSFET on Bonded SOI. Trans. on Electronics, vol. E75-C, nr. 12, pp. 1442-1446.
  • 37. J. W. Kronberg: High-temperature Behaviour of MOS Devices., SOUTHHEASTCON'81 , Huntsville 1981, pp. 735-739.
  • 38. G. Jones: Dielectric Isolation Techniques in High-Temperature Electronics., Electrotechnology, vol. 11, nr. 2, pp. 54-57.
  • 39. D. M. Fleetwood, F. V. Thome, S. S. Tsao, P. V. Dressendorfer, V.J. Dandini, J. R. Schwank: High Temperature Silicon-on-insulator Electronics for Space Nuclear Power, Systems: Requirements and Feasibility. IEEE Trans. Nuclear Science, vol. 35, nr. 5, pp. 1099-1112.
  • 40. A. J. Auberton-Herve, J. P. Colinge, D. Flandre: High temperature applications of SIMOX technology" HITEN News, nr. 5, 1995, pp. 4-6.
  • 41. B. Gentinne, D. Flandre, J.-P. Colinge, F. van de Wiele: Measurement and Two-dimensional Simulation of Thin-film SOI MOSFETs: Intrinsic Gate Capacitances at Elevated Temperatures. Solid-St. Electron., vol.39, 1996, pp. 1613-1619.
  • 42. P. Gehse, J. W. Klein: Reliability of SIMOX-operational Amplifiers for Applications up to 3000C. Int. High Temp. Electronics Conf., Albuquerque 1996, pp. XIV.3-8.
  • 43. Honeywell data leaflet, 2000
  • 44. G. G. Ortiz, C. P. Hains, J. Cheng, H. Q. Hou, J. C. Zolper: Monolithic Integration of JnGaAs Vertical Cavity Surface Emitting Lasers with Resonance -Enhanced Quantum Well Photodetectors. Electron. Lett., vol.32, 1998, pp. 1-3.
  • 45. I. Aller, C. Lang, G. Schweeger, H. L. Hartnagel, R. Dolt, G. Hohenberg: Gallium Arsenide Piezotransistor for Dynamic Pressure Measurements at High Temperature. Appl., Phys. Lett., vol.69, 1996, pp. 403-405
  • 46. K. Fricke, W. Y. Lee, J. Wurfl, V. Krozer, H. L. Hartnagel: Microweve characterization and comparison of Performace of GaAs based MESFETs, HEMTs and HBTs operating at high ambien temperatures. Eur. GaAs and Related III-V Comp. Appl. Symp., Noordwijk 1992,
  • 47. R. P. Ribas, J. Lescot, J. L. Leclerq, N. Bennouri, J. M. Karam, B. Courtois: Micromachined Planar Spiral Inductor in Standard GaAs HEMT MMIC Technology., IEEE Electron Dev. Lett., vol.19, 1998, pp. 285-287.
  • 48. J. W. Klein: Silicon and Gallium Arsenide in High Temperature Electronics Applications. ISSSE'95, San Francisko 1995, pp. 157-162
  • 49. C. D. Wilson, A. G. O'Neill, S. M. Baier, J. C. Nohava: High Temperature Performace and Operation of HFET's. IEEE Trans. Electron Dev., vol.43, 1966, pp. 201-206.
  • 50. J. Würfl, B. Janke: Technology towards GaAs MESFET-based IC for High Temperature Applications. Materials Science & Eng. B, vol.B-46, nr.1-3, 1997, pp. 52-56.
  • 51. K. Shenai, R. S. Scott, B. J. Baliga: Optimum Semiconductors for High-Power Electronics. IEEE Trans. Electron Devices, vol.36, nr.9, 1989, pp. 1811-1823.
  • 52. H. Z. Fardi, J. I. Pankove: Modeling and Characterisation of High Frequency High Power GaN/SiC HBT's Operatiing at High Temperature. Proc. SPIE, vol.2693, 1996, pp. 73-83.
  • 53. S. C. Binari, K. Doverspike, G. Kelner, H. B. Dietrich, A. E. Wickenden: GaN FETs for Microwave and High-temperature Applications. Solid-St. Electron., vol. 41, 1997, pp. 177-180.
  • 54. M. W. Geis, D. D. Rathman, D. J. Ehrilich, R. A. Murphy, W. T. Lindley: High Temperature Point-contact Transistors and Scottky Diodes Formed on Synthetic Boron-doped Diamond IEEE Electron Dev. Lett., vol. EDL-8, 1987, pp. 341-343
  • 55. G. Kelner, S. Binari, M. Shur, J. Palmour: High Temperature Operation of (-Silicon Carbide Buried-Gate Juntion Field-Effect Transistors. Electron. Lett., vol. 27, nr.12, 1991, pp. 1038-1040.
  • 56. R. Piellisch: Silicon Carbide Takes the Heat. Aerospace America, vol.32, 1994, pp. 28-31.
  • 57. J. W. Palmour, R. Singh, R. C. Glass, O. Kordina, C. H. Carter: Silicon Carbide for Power Devices. ISPSD'97, Weimar 1997, pp. 25-32.
  • 58. Z. Lisik, H. Stojek: Węglik krzemu - Nowy materiał mikroelektroniki. Elektronika - ZN PŁ, 1998, pp. 223-241.
  • 59. L. G. Matus, J. A. Powell, C. S. Salupo: High-voltage 6H-SiC p-n junction diodes. Appl. Phys. Lett., vol. 59, 1991.
  • 60. J. A. Edmond, H. S. Kong, C. H. Carter: High Temperature Rectifiers. UV Photodiodes and Blue LEDs in 6H-SiC, 4th Iint,. Conf. Amorphous and Crystalline SiC and Other IV-IV Materials, Santa Ciara, 1991.
  • 61. S. T. Sheppard, M. R. Melloch, J. A. Cooper: Characteristics of Inversion-Channel and Buried-Channel MOS Devices in 6H-SiC. IEEE Trans. Electron Devices, vol. 41, 1994, pp. 1257-1264.
  • 62. S. H. Ryu, K. T. Kornegay, J. A. Cooper, M. R. Meloch: Digital CMOS ICs in 6H-SiC Operating on a SV Power Supply. IEEE Trans. Electron Dev., vol.45, 1998, pp. 45-53.
  • 63. M. E. Levinshtein, J. W. Palmour, S. L. Rumyanetsev, R. Singh: Tum-on Process in 4H-SiC Thyristors. IEEE Trans. Electron Devices, vol. 44, 1997, pp. 1177-1179.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA2-0008-0211
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.