PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling and optimisation of high-temperature detectors of long wavelength infrared radiation with optically resonant cavity

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
XVII School of Optoelectronics : Photovoltaics-Solar Cells and Detector ; (17. ; 13-17.10.2003 , Kazimierz Dolny, Poland)
Języki publikacji
EN
Abstrakty
EN
We present an analysis and optimisation of optical resonant cavity enhanced (ORC) long wavelength Hg₁₋xCdxTe photovoltaic detectors operating at near room temperatures. The resonant cavity is based on Hg₁₋xCdxTe Bragg reflector and detector heterostructure grown on a GaAs substrate, supplied with a metal back reflector. Such devices are compatible with low-temperature epitaxial (MBE and MOCVD) techniques. The optical gain due to ORC enhancement was calculated for the ambient temperature and the temperatures achievable with two-stage Peltier cooled 10.6 um detectors as a function of the device design and an incidence angle.
Słowa kluczowe
Twórcy
autor
  • Warsaw University of Technology, 75 Koszykowa Str., 06-662 Warsaw, Poland
  • Military Institute of Armament Technology 7 Prymasa Wyszyńskiego Str., 05-220 Zielonka, Poland
Bibliografia
  • 1. A. Rogalski, “New trends in development of electromagnetic radiation detectors”, Postêpy Fizyki 51, 57–68 (2000). (in Polish)
  • 2. A. Rogalski, “Infrared detectors at the beginning of the next millennium,” Sensors and Materials 12, 233–288 (2000).
  • 3. A. Rogalski “Heterostructure infrared photovoltaic detectors,” Infrared Physics & Technology 41, 213–238 (2000).
  • 4. J. Piotrowski, W. Galus and M. Grudzień, “Near room-temperature IR photo-detectors”, Infrared Phys. 31, 1–48. (1991).
  • 5. J. Piotrowski. “Hg1-xCdxTe infrared photodetectors,” in Infrared Photon Detectors, pp. 391–494, edited by A. Rogalski, SPIE Press, Bellingham, 1995.
  • 6. Z. Bielecki and A. Rogalski, Detekcja Sygnalów Optycznych, Wydawnictwa Naukowo-Techniczne, Warszawa, 2001.
  • 7. B.Ściana, D. Radziewicz, I. Zborowska-Lindert, B.Boratyński, R. Czernecki, P. Sitarek, J. Misiewicz, and M. Tłaczała, “Technology and characterization of resonant cavity enhanced MSM GaAs photodetectors”, Electron Technology 33, 404–407 (2000).
  • 8. T. Niedziela, “Influence of optical resonance cavity on operation of far infrared (Hg,Zn)Te photoresistors, Electron Technology 24, 71–85 (1991).
  • 9. M.S. Ûnlû and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 15 (1995).
  • 10. J.L. Pautrat, E. Hadji, J. Bleuse, and N. Magnea, “Resonant-cavity infrared optoelectronic devices”, J. Electr. Mater. 26, 667–672 (1997).
  • 11. J. Piotrowski, “Uncooled operation of IR photodetectors”, Opto-Electron. Rev. 12, 111–122 (2004).
  • 12. N.H. Jo, S.D. Yoo, B.G. Ko, S.W. Lee, J. Jang, S. D. Lee, and K.D. Kwack, ”Two-dimensional numerical simulation of HgCdTe infrared detectors”, Proc. SPIE 3436, 50–60 (1998).
  • 13. S.D. Yoo, N.H. Jo, B.G. Ko, J. Chang, J.G. Park, and K.D. Kwack, “Numerical simulation for HgCdTe related detectors”, Opto-Electron. Rev. 7, 347–356 (1999).
  • 14. P. Yech, “Optical waves in layered media”, Photonics & Lightwave Technology, (1988).
  • 15. E.O. Kane, “Band structure of InSb”, J. Phys. Chem. Solids 1, 249 (1957).
  • 16. V. Nathan, “Optical absorption in Hg1–xCdxTe”, J. Appl. Physics 83, 2812-2813 (1998).
  • 17. J. Chu, Z. Mi, and D. Tang, “Intrinsic absorption spectroscopy and related physical quantities of narrow-gap semiconductors Hg1–xCdxTe”, Infrared Physics 32, 195–211 (1991).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA2-0008-0119
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.