PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electron traps in Cu(In,Ga)Se2 absorbers of thin film solar cells studied by junction capacitance techniques

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results of steady state and transient capacitance spectrocsopy for ZnO/CdS/Cu(In,Ga)Se2 solar cells are presented. A minority carrier signal from the interface region of absorber has been investigated using Laplace-DLTS. Contributions belonging to three discrete electron traps with thermal emission rates distorted by electric field - assisted tunnelling have been identified and assigned to InCu antisite defect. Support for these conclusions has been also provided by admittance spectroscopy of samples in various metastable states created by prolonged exposition to light, voltage bias or elevated temperature. Two other deep electron traps have been revealed by the use of DLTS injection. One of them, tentatively assigned to the VSe defect, is involved in the metastable phenomena observed in Cu(In,Ga)Se2 - based solar cells. Judging from the high value of capture cross section for carriers of both signs we conclude that it might be a dominating recombination centre in these devices.
Twórcy
autor
  • Faculty of Physics, Warsaw University of Technology, 75 Koszykowa Str., 00-662 Warszawa, Poland
  • Faculty of Physics, Warsaw University of Technology, 75 Koszykowa Str., 00-662 Warszawa, Poland
Bibliografia
  • 1. M.A. Contrera , B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, and R. Noufi, "Progress toward 20% efficiency in Cu(In, Ga)Se2 polycrystalline thin film solar cells", Progr. Photov. Res. Appl. 7, 311-316 (1999).
  • 2. U. Rau and H.W. Schock, "Electronic properties of Cu(In, Ga)Se2 heterojunction solar cells - recent achievements, current understanding, and future challenges" Appl. Phys. A69, 131-147 (1999).
  • 3. M. lgalson and P. Zabierowski, "Transient capacitance spectroscopy of defect levels in CIGS devices", Thin Solid Films 361/362, 371-377 (2000).
  • 4. P. Zabierowski, U. Rau, and M. lgalson ,"Classification of the metastabilities in the electrical characteristics of ZnO/CdS/Cu(In, Ga)Se2 devices", Thin Solid Films 387, 147-150 (2001).
  • 5. M. lgalson, M. Bodegard, L. Stolt, and A. Jasenek, "The "defected layer" and the mechanism of the interface-related metastable behaviour in the ZnO/CdS/Cu(In, Ga)Se2 devices", Thin Solid Films 431/432C, 153-157 (2003).
  • 6. J. Kessler, M. Bodegård, J. Hedstrom, and L. Stolt, "Baseline Cu(In, Ga)Se2 device production: control and statistical significance", Sol. Ener. Mat. Sol. Cells 67, 67-75 (2001).
  • 7. V. Nadenau, D. Branger. D. Hariskos, M. K. Kessler, D. Schmid, C. Koble, A. Oberacker, M. Ruck, U. RUhle, R. Schafler, D. Schmid, T. Walter, S. Zweigart, and H.W. Schock, "Solar cells based on CulnSe2 and related compounds: material and device properties and processing", Progr. Photovolt. Res. Appl. 3, 363-382 (1995).
  • 8. D.V. Lang, "Space charge spectroscopy in semiconductors", in Thermaly Stimulated Relaxation in Solids, pp. 93-133, edited by P. Braunlich, Springer-Verlag, 1979.
  • 9. G.P. Li, K.L. Wang, "A novel technique for studying electric field effect of canier emission from a deep level centre", Appl. Phys. Lett 42, 838-840 (1983).
  • 10. M. lgalson, P. Zabierowski, A. Romeo, L. Stolt, "Reverse - bias DLTS for investigation of the interface region of thin film solar cells", Opto-Electron. Rev. 8, 346-349 (2000).
  • 11. L. Dobaczewski, P. Kaczor, I. D. Howkins, A. R. Peaker, "Laplace transform deep level spectroscopic studies of defects in semiconductors" J. Appl. Phys. 76, 194-198 (1994).
  • 12. P. Blood and J.W. Orton, The Electrical Characterization of Semiconductors: Majority Carriers and Electron States, London, Academic Press, 1990.
  • 13. A. Niemegeers, M. Burgelman, R. Herberholz, U. Rau, D. Hariskos, H. W. Schock, "Model for electronic transport in Cu(In, Ga)Se2 solar cell", Prog. Photovolt. Res. Appl. 6, 407-421 (1998).
  • 14. R. Herberholz, M. lgalson, and H.W. Schock, "Distinction between bulk and interface states in CuinSe2/CdS/ZnO by space charge spectroscopy", J. Appl. Phys. 83, 318-325 (1998).
  • 15. P. Zabierowski, M. lgalson, and H.W. Schock, "Light-induced metastabilities in the interface region of Cu(In, Ga)Se2-based photovoltaic devices studied by Laplace transform junction spectroscopy", Solid State Phenomena 67/68, 403-408 (1999).
  • 16. M. Igalson, A. Kubiaczyk, P. Zabierowski, M. Bodegard, and K. Granath, "Electrical characterization of ZnO/CdS//Cu(In,Ga)Se2 devices with controlled sodium content", Thin Solid Films 387, 225-227 (2001).
  • 17. P. Zabierowski and M. lgalson, "Thermally assisted tunnelling in Cu(ln, Ga)Se2-based photovoltaic devices", Thin Solid Films 361/362, 268-272 (2000).
  • 18. P. Zabierowski, Ph. D. Thesis, Warsaw University of Technology, Warszawa 2002.
  • 19. S.B. Zhang, S.H. Wei, A. Zunger, and H. Katayama-Yoshida, "Defect physics of the CuinSe2 chalcopyrite semoconductor", Phys. Rev. B57, 9642-9657 (1998).
  • 20. M. lgalson and L. Stolt, "Deep levels and space-charge distribution in Cu(ln, Ga)Se2 photovoltaic devices", Jap. J. Appl. Phys. 39 suppl. 39-1, 426-429 (2000).
  • 21. M. Igalson, M. Bodegard, and L. Stolt, "Reversible changes of the fill factor in the ZnO/CdS/Cu(In, Ga)Se2 solar cells", Sol. En. Mat & Sol. Cells 80, 195-207 (2003).
  • 22. M. lgalson, M. Bodegird, and L. Stolt, "Recombination centres in the Cu(In, Ga)Sez-based photovoltaic devices", J. Phys. Chem. Solids 64, 2041-2045 (2003).
  • 23. M. lgalson, M. Wimbor, and J. Wennerberg, "The change of the electronic properties of CIGS devices induced by the 'damp heat' treatment", Thin Solid Films 403/404, 320-324 (2002).
  • 24. S.H. Wei, S. B. Zhang, and A. Zunger, "Effects of Na on the electrical and structural properties of CulnSe2" J. Appl. Phys. 85, 7214-7218 (1999).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA2-0008-0037
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.