PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

FEM modelling of ceramic microstructures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Modelowanie MES mikrostrusktur ceramicznych
Języki publikacji
EN
Abstrakty
EN
The computer simulation of physical processes is one of the current direction of research development of body structures behaviour. The method, which was worked out (experimentally confirmed), gives an opportunity to analyse the same problems numerically, without expensive experiment. Recently the finite element method (FEM) has been used to invastigate the above problems. The authors of in the first part of the paper consider crack-face bridging, the stress field and the stress intensity factor ahead of the crack tip in the single-edge notched bend ceramics specimen using FEM. To solve this non-linear problem the incremental procedure was used. The results of this analysis are the stress and displacements on the bridging crack and external load, which allow to compute the stress intensity factor and fracture energy. The main aim of the second part of the work is to establish the method of numerical simulation of stress induced transformation of ZrO₂ from the tetragonal to monoclinic phase which takes place at the crack tip in two-phase Al₂O₃ - ZrO₂ ceramic composite. It is the base for the future crack growth numerical simulations in composite with the use of FEM models with the real grain size distribution and shape. The preliminary analysis allows us to estimate influence of phase transformation of the composite on the cracking resistance.
PL
Komputerowa symulacja procesów fizycznych jest jednym z obecnych kierunków badań zachowań ciała stałego. Metoda, która została wypracowana (sprawdzona eksperymentalnie), daje możliwość numerycznego analizowania tych problemów, bez ponoszenia kosztów na eksperymenty. W ostatnim czasie użyto metody elementów skończonych (MES) do badania tych zagadnień. Autorzy w pierwszej części pracy, przy pomocy MES, rozważają efekt mostkowania pęknięcia, pole naprężeń i współczynnik intensywności naprężeń na czole pęknięcia w zginanej, naciętej próbce ceramiki. W celu rozwiązania tego nieliniowego problemu zastosowano procedurę przyrostową. Wynikiem analizy są naprężenia i przemieszczenia w obszarze mostkowanego pęknięcia oraz obciążenie zewnętrzne, co pozwala wyliczyć współczynnik intensywności naprężeń i pracę pękania. Głównym celem drugiej części pracy jest opracowanie metody numerycznej symulacji indukowanej naprężeniowo przemiany ZrO₂ z fazy tetragonalnej w jednoskośną, która ma miejsce na czole pęknięcia w dwufazowych kompozytach ceramicznych Al₂O₃ - ZrO₂. Jest to podstawa do dalszych symulacji numerycznych kompozytów, przy użyciu modeli MES z rzeczywistym rozkładem wielkości i kształtem ziaren. Wstępna analiza pozwala oszacować wpływ przemiany fazowej w kompozycie na odporność na pękanie.
Rocznik
Strony
225--246
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
autor
  • Department of General Mechanics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
autor
  • Department of General Mechanics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
  • Department of General Mechanics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
Bibliografia
  • [1] Cao J. W., Sakai M., Crack-face fiber bridging: finite element analysis, analytical model and experimental results, J. Mater. Res., vol. 11, no. 6, 1996.
  • [2] Sakaida Y., Okada A., Tanaka K., Yasutomi Y., Computational simulation of microcrack propagation behaviour in polycrystaline ceramics by finite element method, Proceedings of the 9th CIMTEC Ceramics Congress and Forum on New Materials, Florence, Italy, 6/17, 1998.
  • [3] Niezgoda T., Małachowski J., Boniecki M., Finite element simulation of Vickers microindentation on alumina ceramics, Ceramics International, 24, 359-364, 1998.
  • [4] Niezgoda T., Małachowski J., Boniecki M., FEM modelling of subcritical crack growth in Al203 ceramics, mater, konf. CIMTEC’98 - World Ceramics Congress, Florencja, Włochy, 1998.
  • [5] Swanson P. L., Fairbanks C. J., Lawn B. R., Mai Y, Hockey B. J., Crack-intetface grain bridging as a fracture resistance mechanism in ceramics: I, experimental study on alumina, J. Am. Ceram. Soc., 70 [4], 1987.
  • [6] Thouless M. D., Evans A. G., Effects of pull-out the mechanical properties of ceramic-matrix composites, Acta Metall., vol. 36 no. 3, 1988.
  • [7] Fett T., Munz D., Evaluation of R-curves in ceramic materials based on bridging interactions, Kfk- Report 4940, Kemforschungszentrum Karlsruhe, 1990.
  • [8] Fett T., Influence of bridging stresses on specimen compliances, Eng. Fract Mech., vol. 53 no. 3,1996.
  • [9] Steinbrech R., Khenas R., Schaawrachter W., Increase of crack resistance during slow crack growth in Al2O3 bend specimens, J. Mater. Sci., 18, 1983.
  • [10] Fett T., Munz D., Subcritical crack growth of macrocrack in alumina with R-curve behaviour, J. Am. Ceram. Soc.,73 [4], 958-63, 1992.
  • [11] Llorca J., Steinbrech R. W., Fracture of alumina: an experimental and numerical study, J.Mater. Res., no. 26, 1991.
  • [12] Rice J. R., Some remarks on elastic-tip stress fields, in J. Solids Structures, vol. 8 (1972).
  • [13] Tada, H., Paris, P.C. and Irwin, G. R. (1985). The stress analysis of cracks, Handbook, Del Research Corporation, St Louis, Missouri.
  • [14] Evans A.G., Heuer A.H., Transformation toughening in ceramics: Martensitic transformations in crack-tip stress Fields, J. Am. Soc., vol. 63 [5-6], 1980, pp 241-248.
  • [15] Evans A. G., McMeeking R. M., On the toughening of ceramics by strong reinforcement, Acta Metall., vol. 34, no. 12, 1986.
  • [16] Rice J. R., Freiman S. W., Grain-size dependence of fracture energy in ceramics: II, A model for noncubic materials, J. Am. Ceram. Soc., 64 [6], 1981, 350-354.
  • [17] Swanson P. L., Fairbanks C. J., Lawn B. R., Mai Y, Hockey B. J., Crack-interface grain bridging as a fracture resistance mechanism in ceramics: I, experimental study on alumina, J. Am. Ceram. Soc., 70 [4], 1987.
  • [18] J. E. Blendell, R. L. Coble, Measurements of stress due to thermal expansion anisotropy in Al2O3, J. Am. Ceram. Soc., 65, 3,(1982), 174.
  • [19] D. R. Clarke, F. Adar, Measurement of the crystallographically transformed zone produced by fracture in ceramics containing tetragonal zirconia, J. Am. Soc., vol. 65, No. 6, (1981).
  • [20] V. Seigo, X. L. Wang, D. R. Clarke, P. F. Becher, Residual stresses in alumina/ceria stabilized zirconia composites, J. Am. Soc., 78 [8] 2213-14 (1995).
  • [21] J. He, D. R. Clarke, Determination of the piezospectroscopic coefficients for chromium-doped saphire, J. Am. Soc., 78 [5] 1347-53 (1995).
  • [22] Q. Ma, D. R. Clarke, Piezospectroscopic determination of residual stresses in polycrystalline alumina, J. Am. Soc., 77 [2] 298-302 (1994).
  • [23] S. Molis, D. R. Clarke, Measurements of stresses using fluorescence in an optical microprobe: stresses around indentations in a chromium-doped saphire, J. Am. Soc., 73 [11] 3189-94 (1990).
  • [24] V. Tvergaard, J. W. Hutchinson, Microcracking in ceramics induced by thermal expansion or elastic anisotropy, J. Am. Soc., 71 [3] 157-66 (1988).
  • [25] L. Grabner, Spectroscopic technique for the measurement of residual stress in sintered Al2O3, J. App. Phys., 49 [2] (1978).
  • [26] E. Merlani, Ch. Schmid, V. Sergo, Residual stresses in alumina/zirconia composites: effect of cooling rate and grain size, J. Am. Soc., 84 [12] 2962-68 (2001).
  • [27] A Kreil, A. Teresiak, D. Schläfer, Grain size dependent residual microstresses in submicron Al2O3 and ZrO2, J. Am. Soc., 16 [2] 803-811 (1996).
  • [28] M. R. Gallas, Y. C. Chu, G. J. Piermarini, Calibration of the Raman effect in a-Al2O3 ceramic for residual stress measurements, J. Mater. Res., vol. 10, No. 11, (1995).
  • [29] T. Fett, D. Munz, Subcritical Crack growth of macrocracks in alumina with R-curve Behavior, J. Am. Soc., 75 [2] 958-63 (1992).
  • [30] X.-L. Wang, J. A Femandez-Baca, C.R. Hubbard, K. B. Alexander, P. F. Becher, Transformation behavior in Al2O3-ZrO2 ceramic composites, Physica B, 213&214 (1995) 824-826.
  • [31] G. Pezzotti, V. Sergo, O. Sbaizero, N. Muraki, S. Meriani, T. Nishida, Strenghtening contribution arising from residual stresses in Al2O3/ZrO2 composite: a piezo-spectroscopy investigation, J. Am. Soc., 19 247-253 (1999).
  • [32] Williams, Q. Infrared, Raman and optical spectroscopy of earth materials, in: mineral physics and crystallography, Ahrens, T.J. (Ed) AGU Reference Shelf 2.1995. 291-302.
  • [33] http://www.gfz-potsdam.de/pb4/pg2/equipment/raman/raman-lab.html
  • [34] M. Koizumi, FGM activities in Japan, Composites: Part B, 28B (1997) 1-4.
  • [35] M. Grujicic, Y. Zhang, Determination of effective elastic properties offunctionally graded materials using Voronoi cell finite element method, Mat. Sei. Eng. A251 (1998) 64-76.
  • [36] Y. M. Shabana, N. Noda, Thermo-elasto-plastic stresses in functionally graded materials subjected to thermal loading taking residual stresses of the fabrication process into considerations, Composites: Part B 32 (2001) 111-121.
  • [37] J. Y. Li, Thermoelastic behavior of composites with functionally graded interphase: a multi-inclusion model, Int. J. Sol. Struct. 37 (2000) 5579-5597.
  • [38] T. L. Becker Jr, R. M. Cannon, R. O. Ritchie, An approximate method for stress calculation in functionally graded materials, Meeh. Mai. 32 (2000) 85-97.
  • [39] J. R. Cho, D. Y. Ha, Optimal tailoring of 2D volume-fraction distributions for heatresisting functionally graded materials using FDM, Comput. Meth. Appl. Meeh. Eng. 191 (2002) 3195-3211.
  • [40] D. Delfosse, N. Cherradi, B. Ilshner, Numerical and experimental determination of residual stresses in graded materials, Composites: Part B, 28B (1997) 127-141.
  • [41] H. E. Petermann, A E Plankensteiner, H. J. Böhm, F. G. Rammerstorfer, A thermo-elasto-plastic constitutive law for inhomogeneous materials based on an incremental Mori-Tanaka approach, Comp. Struct. 71 (1999) 197-214.
  • [42] L.L. Shaw, Thermal residual stresses in plates and coatings composed of multi-layered and functionally graded materials, Composites: part b, 29B (1998) 199-210.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA2-0008-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.