PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Status of HgCdTe photodiodes at the Military University of Technology

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
The Fourth Scientific Symposium on Image Processing Technology. TPO 2002 ; (21.11-23.11.2002) ; Serock, Poland
Języki publikacji
EN
Abstrakty
EN
The paper presents technological achievements in fabrication of cryogenically-cooled and ambient temperature HgCdTe photodiodes carried out during the last four years at the Institute of Applied Physics, Military University of Technology. Because of the complicated and expensive fabrication process, numerical simulation has become a critical tool for the development of HgCdTe bandgap engineering devices. Therefore in the second part of the paper, an original interation scheme is used to predict the effect of composition and doping profiles on the heterojunction detector parameters. A novel tipping boat for liquid phase epitaxial (LPE) growth of HgCdTe from Te-rich solutions has been proposed. The successful fabrication of long wevelength infrared (LWIR) Hg1-yCdyTe/Hg1-xCdxTe heterostructures (y x) on semi-insulating (111)CdZnTe substrates is presented. The performance of p-on-n double-layer heterojunction (DLHJ) photodiodes at temperature 77 K is analysed. It is also shown that LPE can be used to realise advanced bandgap engineered multi-junction structures. The parameters and characteristics of the new type of HgCdTe buried photodiodes, operated at near-room temperature (T = 200-300 K) in LWIR spectral range, are reported. Finally, an effective numerical model for performance predictions of HgCdTe heterostructure device is presented. The model is used to analyse the performance of dual-band HgCdTe photovoltaic detector and mid wavelength infrared (MWIR) HgCdTe heterostructure device. In the last case, it is shown that excess 1/f noise of MWIR non-equilibrium heterostructure device is connected with fluctuation of carrier mobility.
Rocznik
Strony
211--226
Opis fizyczny
Bibliogr. 43 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
Bibliografia
  • 1. J. Piotrowski and A. Rogalski, Semiconductor lnfrared Detectors, WNT, Warsaw, 1984. (in Polish).
  • 2. A. Rogalski and J. Piotrowski, "Intrinsic infrared detectors", Progress in Quantum Electronics 12, 87-289 (1988).
  • 3. A. Rogalski, "InAs1-xSbx infrared detectors", Progress in Quantum Electronics 13, 191-231 (1989).
  • 4. A. Rogalski, "Hg 1-xZnxTe a a potential infrared detector material", Progress in Quantum Electronics 13, 299-353 (1989).
  • 5. A. Rogalski, "Hg 1-xMnxTe as a new material for infrared detectors", Infrared Physics 31, 117-166 (1991).
  • 6. A. Rogalski (editor) Selected Papers on Semiconductor lnfrared Detectors, SPIE Milestone Series, Vol. MS 66, SPIE Optical Engineering Press, Bellingham, USA, 1992.
  • 7. F.F. Sizov and A. Rogalski, "Semiconductor superlattices and quantum wells for infrared optoelectronics", Progress in Quantum Electronics 17, 93-164 (1993).
  • 8. A. Rogalski, New Ternary Alloy Systems for Infrared Detectors, SPIE Optical Engineering Press, Bellingham, 1994.
  • 9. A. Rogalski, Infrared Photon Detectors, SPIE Optical Engineering Press, Bellingham, 1995.
  • 10. J. Piotrowski and A. Rogalski, "Photoelectromagnetic, magnetoconcentration and Dember infrared detectors" in Narrow-Gap II-VI Compounds and Electromagnetic Applications, pp. 506-525, edited by P. Capper, Chapman & Hall, London 1997.
  • 11. A. Rogalski, Infrared Detectors, Gordon and Breach Science Publishers, Amsterdam, 2000.
  • 12. A. Rogalski, "Hg-based alternatives to MCT," in Infrared Detectors and Emitters: Materials and Devices, pp. 377-400, edited by P. Capper and C.T. Elliott, Kluwer Academic Publishers, Boston, 2001.
  • 13. A. Rogalski, K. Adamiec, and J. Rutkowski, Narrow-Gap Semiconductor Photodiodes, SPIE Press, Bellingham, 2000.
  • 14. Z. Bielecki and A. Rogalski, Detection of Light, WNT, Warsaw, 2001 (in Polish).
  • 15. A. Rogalski, "Comparison of photon and thermal detectors performance", in Handbook of Infrared Detection Technologies, pp. 5-81, edited by M. Henini and M. Razeghi, Elsevier, Amsterdam, 2002.
  • 16. A. Rogalski, "Quantum well photoconductors in infrared detector technology", J. Appl. Phys. 93, 4355-4391 (2003).
  • 17. A. Rogalski and W. Larkowski, "Comparison of photodiodes for the 3-5.5 μm and 8-12 μm spectral regions", Electron Technology 18(3/4), 55-69 (1985).
  • 18. J. Wenus, J. Rutkowski, and A. Rogalski, "Two-dimensional analysis of double-layer heterojunction HgCdTe photodiodes", IEEE Trans. Electron Devices 48, 1326-1332 (2001).
  • 19. P. Capper, T. Tung, and L. Colombo, "Liquid phase epitaxy" in Narrow-Gap II-VI Compounds for Optoelectronic and Electromagnetic Applications, pp. 30-70, edited by P. Capper, Chapman@Hall, London, 1997.
  • 20. Y. Nemirowsky, S. Margalit, E. Finkman, Y. Shacham-Diamand, and T. Kidron, "Growth and properties of Hg 1-xCdxTe epitaxial layers", J. Electronic Materials 11, pp.133-153, 1982.
  • 21. J.S. Chen, Y.L. Wu, C.D. Chiang, and T.B. Wu, "Growth of Hg 1-xCdxTe heterolayers by slider LPE using separate compensating atmosphere of mercury", J. Crystal Growth 113, 520-526, 1991.
  • 22. T. Tung, L.V. DeArmond, R.F. Herald, P.E. Herning, M.H. Kalisher, D.A. Olson, R.F. Risser, A.P. Stevens, and S.J. Tighe, "State of the art of Hg-melt LPE HgCdTe at Santa Barbara Research Center", Proc. SPIE 1735, 109-131 (1992).
  • 23. J. Piotrowski and M. Razeghi, "Improved performance of IR photodetectors with 3D gap engineering", Proc. SPIE 2397, 180-192 (1995).
  • 24. J. Piotrowski, M. Grudzień, Z. Nowak, Z. Orman, J. Pawluczyk, M. Romanis, and W. Gawron, "Uncooled photovoltaic Hg 1-xCdxTe LWIR detectors", Proc. SPIE 4130, 175-184 (2000).
  • 25. J. Piotrowski and A. Rogalski, "New generation of infrared photodetectors" , Sensors and Actuators A67, 146-152 (1998).
  • 26. J. Piotrowski, " (1-15)-μm CdxHg 1-xTe photodiodes with protected junction surface", Biuletyn. WAT, No. 9, 93-100 (1976). (in Polish).
  • 27. C. Musca, J. Antoszewski, J. Dell, L. Faraone J. Piotrowski, and Z. Nowak, "Multi-junction HgCdTe long wavelength infrared photovoltaic detector for operation at near room temperature", J. Electronic Mat. 27, 740-746 (1998).
  • 28. W. Gawron, K. Adamiec, K. Jóźwikowski, and A. Rogalski, "High sensitivity 8-14-μm HgCdTe photodetectors operated at ambient temperature", Proc. SPIE 3948, 94-103 (2000).
  • 29. W. Gawron and A. Rogalski, "HgCdTe buried multi-junction photodiodes fabricated by the liquid phase epitaxy", Infared Physics and Technol. 43, 157-163 (2002).
  • 30. H.K. Gummel, "A self-consistent iterative scheme for one-dimensional steady state transistor calculations", IEEE Trans. Electron Devices ED 11, 455-465 (1964).
  • 31. A. De Mari, "An accurate numerical steady-state one-dimensional solution of the p-n junction", Solid State Electronics 11, 33-58 (1968).
  • 32. D.L. Scharfetter and H.K. Gummel, "Large-signal analysis of a silicon read diode oscillator", IEEE Trans. Electron Devices ED 16, 64-77 (1969).
  • 33. M. Kurata, Numerical Analysis of Semiconductor Devices, Lexington Books, DC Heath (1982).
  • 34. W.L. Engl, H.K. Dirks, and B. Meinerzhagen, "Device modeling", Proc. IEEE 71, 10-33 (1983).
  • 35. Computer programme Semicad Devices, Dawn Technologies Inc., California, 1994.
  • 36. Computer programme Apsys, Crosslight Software Inc., Ontario, 1998.
  • 37. W. Van Roosbroeck, "Theory of the electrons and holes in germanium and other semiconductors", Bell Syst. Tech. J. 29, 560-607 (1950).
  • 38. K. Jóźwikowski, "Numerical modelling of fluctuation phenomena in semiconductor devices", J. Appl. Phys. 90, 1318-1327 (2001).
  • 39. K. Jóźwikowski and A. Rogalski, "Computer modelling of dual-band HgCdTe photovoltaic detectors", J. Appl. Phys. 90, 1286-1291 (2001).
  • 40. K. Jóźwikowski, A. Rogalski, and A. Jóźwikowska, "Numerical modelling of fluctuation phenomena in semiconductors and detailed noise study of mid-wave infrared HgCdTe-heterostructure devices", J. Electron. Mater. 31, 677-682 (2002).
  • 41. M. B. Reine, A. Hairston, P. O'Dette, S. P. Tobin, F. T. J. Smith, B. L. Musicant, P. Mitra, F. C. Case, "Simultaneous MW/LW dual-band MOCVD HgCdTe 64x64 FPAs", Proc. SPIE 3379, 200-212 (1998).
  • 42. C.T. Elliott, N.T. Gordon, R.S. Hall, TJ. Phillips, C.L. Jones, and A. Best, "1/f noise studies in uncooled narrow gap Hg 1-xCdxTe non-equilibrium diodes", J. Electronic Materials 26, 643-648 (1997).
  • 43. G.S. Kousik, C.M. van Vliet, G. Bosman, and P.H. Handel, Adv. Phys. 34, 663 (1985).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA2-0007-0040
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.