PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Single-photon devices in quantum cryptography

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Third International Conference on Solid State Crystals. Materials Science and Applications. ICSSC '2002 ; (14.10-18.10.2002 ; Zakopane, Poland)
Języki publikacji
EN
Abstrakty
EN
Modern communication in absolute secrecy requires creation of new intrinsically secure quantum communication channels. It is particularly necessary during the first connection between two parties establishing then in assumed unconditional security the secret cryptographic key which is supposed to be used afterwards during normal information exchanging. This new emerging field of quantum information technology is based on na new type of light sources, in which numbers of emitted photons can be carefully controlled. Especially advantageous are sources of single photons emitted at strictly predetermined moments, so called single-photon devices. Then any possible eavesdropper activity will be followed by some unavoidable disturbance which alerts both communication parties to an event. In the present paper, the Purcell effect associated with enhancement of spontaneous emission coupled to a resonator is explained, methods used to produce streams of antibunched photons are given, mechanisms applied to control carrier injection into quantum dots are shown and some possible designs of single-photon devices are presented and described. These devices are based on taking advantage of both the Purcell effect and the atom-like energy spectrum of quantum dots.
Twórcy
autor
  • Institute of Physics, Technical University of Łódź, 219 Wólczańska Str., 93-005 Łódź, Poland
  • Centre for High Technology Materials, University of New Mexico, Albuquerque, USA
  • Institute of Physics, Technical University of Łódź, 219 Wólczańska Str., 93-005 Łódź, Poland
autor
  • Institute of Physics, Technical University of Łódź, 219 Wólczańska Str., 93-005 Łódź, Poland
  • Institute of Physics, Technical University of Łódź, 219 Wólczańska Str., 93-005 Łódź, Poland
  • Institute of Physics, Technical University of Łódź, 219 Wólczańska Str., 93-005 Łódź, Poland
Bibliografia
  • 1. A. Ekert, N . Gisin, B. Huttner, H. Inamori, and H. Weinfurter, "Quantum cryptography", in The Physics of Quantum lnformations, pp. 15-48, edited by D. Bouwmeester, A. Ekert, and A. Zeilinger, Springer Verlag, Berlin, 2001.
  • 2. G. Brassard, N. Lütkenhaus, T. Mor, and B.C. Sanders, "Limitations on practical quantum cryptography", Phys. Rev. Lett. 85, 1330-1333 (2000).
  • 3. Y. Yamamoto, T. Tassone, and H. Cao, Semiconductor Cavity Quantum Electrodynamics, Springer, Berlin, 2000.
  • 4. E.M. Purcell, "Spontaneous emission probabilities at radio frequencies", Phys. Rev. 69, 681 (1946).
  • 5. Cavity Quantum Electrodynamics, edited by P.R. Bennan, Academic Press, Boston 1994.
  • 6. B. Ohnesorge, M. Bayer, A. Forchel, J.P. Reithmaier, N.A. Gippius , and S.G. Tikhodeev, "Enhancement of spontaneous emission rates by three-dimensional photon confinement in Bragg microcavities ", Phys. Rev. B56, R4367-R4370 (1997).
  • 7. J.M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity", Phys. Rev. Lett. 81, 1110-1113 (1998).
  • 8. R. Coccioli, M. Boroditsky, K.W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, "Smallest possible electromagnetic mode volume in a dielectric cavity," IEEE Proc.-Optoelectronics 145, 391-397 (1998).
  • 9. S. Noda, M. !mada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, "Semiconductor three-dimensional and two-dimensional photonic crystal and devices", IEEE J. Quantum Electron. 38, 726-735 (2002).
  • 10. G.S. Solomon, M. Pelton, and Y. Yamamoto, "Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity", Phys. Rev. Lett. 86, 3903-3906 (2001).
  • 11. J.M. Gerard and B. Gayral, "Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities", J. Lightwave Technol. 17, 2089-2095 (1999).
  • 12. T. Ochalski, J. Muszalski, M. Zbroszczyk, J.M. Kubica, K. Regiński, J. Kątcki, and M. Bugajski, "Spontaneous emission control in InxGa1-xAs/GaAs planar microcavities with DBR reflectors", Optical Properties of Semiconductor Nanostructures 81, Nato Science Serie 3, High Technology, 201-210 (2000).
  • 13. T. Baba, T. Hamano, F. Koyama, and K. Iga, "Spontaneous emission factor of a microcavity OBR surface-emitting laser", IEEE J. Quantum Electron. 27, 1347-1358 (1991).
  • 14. T. Krauss, Y.P. Song, S. Thoms, C.D.W. Wilkin on, and R.M. DeRue, "Aiming for thresholdless semiconductor lasers: successful fabrication of 2-D photonic bandgap structures in GaAs/A1GaAs", in Lasers and Electro-Optics Society Meeting, LEOS '94, IEEE, 391-392 (1994).
  • 15. Y. Yamamoto, S. Machida, and G. Bjork, "Microcavity semiconductor laser with enhanced spontaneous emission", Phys. Rev. A44, 657-668 (1991).
  • 16. M. Pelton and Y. Yamamoto, "Ultralow threshold current using a single quantum dot and a microsphere cavity", Phys. Rev. A59, 2418-2421 (1999).
  • 17. O. Benson and Y. Yamamoto, "Master-equation model of a single-quantum-dot microsphere laser", Phys. Rev. AS9, 4756-4763 (1999).
  • 18. G.M. Yang, M.H. MacDougal, and P.D. Dapkus, "Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation", Electron. Lett. 31, 886-888 (1995).
  • 19. C. Santori, M. Pelton, G.S. Solomon, Y. Dale, and Y. Yamamoto, "Triggered single photons from a quantum dot", Phys. Rev. Lett. 86, 1502-1505 (2001).
  • 20. P. Goy, J.M. Raimond, M. Gross, and S. Haroche, "Observation of cavity-enhanced single-atom spontaneous emission," Phys. Rev. Lett. SO , 1903-1906 (1983).
  • 21. D.J. Heinzen, J.J. Childs, J.E. Thomas, and M.S. Feld, "Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator", Phys. Rev. Lett. 58, 1320-1323 (1987).
  • 22. Th. Basché, W.E. Moemer, M. Rnit, and H. Talon, "Photon antibunching in the fluorescence of a single dye molecule trapped in a solid", Phys. Rev. Lett. 69, 1516-1519 (1992).
  • 23. F. De Martini, G. Di Giuseppe, and M. Marrocco, "Single-mode generation of quantum photon states by excited single molecules in a microcavity trap", Phys. Rev. Lett. 76, 900-903 (1996).
  • 24. C. Brunel, B. Lounis, P. Tamarat, and M. Onit, "Triggered source of single photons based on controlled single molecule fluorescence", Phys. Rev. Lett. 83, 2722-2725 (1999).
  • 25. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, "Regulated and entangled photons from a single quantum dot", Phys. Rev. Lett. 84, 2513-2516 (2000).
  • 26. I.A. Walmsley, "Cavity QED using quantum dots", Quantum Electronics and Laser Science Conf, p. 52, Tech. Digest, Baltimore (USA), 6-11 May, 2001.
  • 27. I. Robert, E. Moreau, J.M. Gerard, and I. Abram, "Towards a single-mode single photon source based on single quantum dots", J. Lumin. 94/95, 797-803 (2001).
  • 28. V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M.E. Pistol, L. Samuelson, and G. Bjork, "Single quantum dots emit single photons at a time: Antibunching experiments", App l . Phys. Lett. 78, 2476-2478 (2001).
  • 29. C. Becher, A. Kiraz, P. Michler, W.V. Schoenfeld, P.M. Petroff, Lidon Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon source", Physica E13, 412-417 (2002).
  • 30. R.M . Stevenson, R.M. Thompson, A.J. Shields, I. Farrer, C.J. Lobo, D.A. Ritchie, M.L. Leadbeater, and M. Pepper, "Exciton complexes in individual quantum dots as a single-photon source", Physica E13, 423-426 (2002).
  • 31. R.M. Thompson, R.M. Stevenson, A.J. Shields, I. Faner, C.J. Lobo, D.A. Ritchie, M.L. Leadbeater, and M. Pepper, "Single-photon emission from exciton complexes in individual quantum dots", Phys. Rev. B64, 201302(R) (2002).
  • 32. E. Moreau, I. Robert, J.M. Gerard, I. Abram, L. Manin, and V. Thierry-Mieg, "Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities", Appl. Phys. Lett. 79, 2865-2867 (2001).
  • 33. Z. Yuan, B.E. Kardynal, R.M. Stevenson, A.J. Shields, C.J. Lobo, K. Cooper, N.S. Beattie, D.A. Ritchie, and M. Pepper, "Electrically driven single-photon source", Science 295, 102-105 (2002).
  • 34. A. Imamoðlu and Y. Yamamoto, "Turnstile device for herarded single photons: Coulomb blockade of electron and hole tunnelling in quantum confined p-i-n heterojunctions", Phys. Rev. Lett. 72, 210-213 (1994).
  • 35. J. Kim, O. Benson, H. Kah, and Y. Yamamoto, "A single-photon turnstile device", Nature 397, 500-503 (1999).
  • 36. H.J. Kimble, M. Dagenais, and L. Mandel, "Photon antibunching in resonance fluorescence", Phys. Rev. Lett. 39, 691-694 (1979).
  • 37. P. Granier, G. Roger, A. Aspect, A. Heidmann, and S. Reynolds, "Observation of photon antibunching in phase-matched multi-atom resonance fluorescence", Phys. Rev. Lett. 57, 687-690 (1986).
  • 38. T. Basché, W.E. Moerner, M. Orrit, and H. Talon, "Photon antibunching in the fluorescence of a single dye molecule trapped in a solid", Phys. Rev. Lett. 69, 1516-1519 (1992).
  • 39. P. Michler, A. Kiraz, C. Becher, W.V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, and A. Imamoðlu, "A quantum dot single-photon turnstile device", Science 290, 2282-2285 (2000).
  • 40. E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J.M. Gerard, and I. Abram, "A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar", Physica E13, 418-422 (2002).
  • 41. M. Pelton, J. Vučković, G.S. Solomon, A. Scherer, and Y. Yamamoto, "Three-dimensionally confined modes in micropost microcavities: quality factors and Purcell factors", IEEE J. Quantum Electron. 38, 170-177 (2002).
  • 42. S.L. McCall, A.F. Levi, R.F. Slusher, S.J. Pearton, and R.A. Logan, "Whispering-gallery mode microdisk laser", Appl. Phys. Lett. 60, 289-291 (1992).
  • 43. T. Baba, M . Fujita, A. Sakai, M. Kihara, and R. Watanabe, "Lasing characteristics of GalnAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10 μm", IEEE Photon. Techn. Lett. 9, 878-880 (1997).
  • 44. B. Gayral, J.M. Gerard, A. Lamaitre, C. Dupuis, L. Manin, and J.L. Pelouard, "High-Q wet-etched GaAs microdisk containing InAs quantum boxes", Appl. Phys. Lett. 75, 1908-1910 (1999).
  • 45. L. Collot, V. Lefvre-Seguin, M. Brune, J.M. Raymond, and S. Haroche, "Very high-Q whispering-gallery mode resonance observed on fused silica microspheres", Europhys. Lett. 23, 327-334 (1993).
  • 46. V. Sandoghdar, F. Treussart, J. Hare, V. Lefvre-Seguin, J.M. Raymond, and S. Haroche, "Very low threshold whispering-gallery mode microsphere laser", Phys. Rev. AS4, R1777-R1780 (1996).
  • 47. V. Lefvre-Seguin, "Coupling single atoms or molecules with a microsphere: a progress report", Proc. Laser and Electro-Optics Society Annual Meeting, LEOS'97, San Francisco 10-13 Nov., 29-30 (1997).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA2-0007-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.