PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Designing of possible structures of nitride vertical-cavity surface-emitting lasers

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Third International Conference on Solid State Crystals. Materials Science and Applications. ICSSC '2002 ; (14.10-18.10.2002 ; Zakopane, Poland)
Języki publikacji
EN
Abstrakty
EN
Performance of various possible designs of 400-nm nitride vertical-cavity surface-emitting lasers (VCSELs) has been analysed with the aid of the advanced three - dimensional (3D) thermal-electrical-optical-gain self-consistent threshold simulation. It has been demonstrated that it is practically impossible to reach the fundamental - mode operation in nitride VCSELs of the traditional design with two ring contacts. To enhance this desired operation, uniformity of current injection into VCSEL active regions should be dramatically improved. Therefore we focused our research on designs with tunnel junctions and/or a semitransparent contact. In particular, it has been proved that the design with two cascading active regions, two tunnel junctions and a semitransparent contact may offer the most promissing room-temperature performance characteristics for both pulse and continuous-wave operation. In particular, this design offers high mode selectivity with distinct fundamental transverse mode domination. Our simulations reveal, that the thickness and localization of a semitransparent contact as well as localization of active regions and tunnel junctions are crucial for a succesful construction designing.
Twórcy
  • Institute of Physics, Technical University of Łódź, 219 Wólczańska Str., 93-005 Łódź, Poland
  • Institute of Physics, Technical University of Łódź, 219 Wólczańska Str., 93-005 Łódź, Poland
  • Institute of Physics, Technical University of Łódź, 219 Wólczańska Str., 93-005 Łódź, Poland
autor
  • Institute of Physics, Technical University of Łódź, 219 Wólczańska Str., 93-005 Łódź, Poland
autor
  • Institute of Physics, Technical University of Łódź, 219 Wólczańska Str., 93-005 Łódź, Poland
Bibliografia
  • 1. Y.K. Song, M. Diagne, H. Zhou, A.V. Nurmikko, R.P. Schneider Jr, and T. Takeuchi, "Resonant-cavity InGaN quantum-wen blue light-emitting diodes", Appl. Phys. Lett. 77, 1744-1746 (2000).
  • 2. S. Uchiyama and K. Iga, "Consideration on threshold current density of GalnAsP/lnP surface emitting junction lasers", IEEE J. Quantum Electron. QE-22, 302-309 (1986).
  • 3. H. Wenzel and H.J. Wünsche, "The effective frequency method in the analysis of vertical-cavity surface-emitting lasers", IEEE J. Quantum Electron. 33, 1156-1162 (1997).
  • 4. S.L. Chuang, Physics of Optoelectronic Devices, Chapter 10.3, Wiley, New York, 1995.
  • 5. M. Mandy. Y. Leung, A.B. Djurisic, and E.H. Li, "Refractive index of InGaN/GaN quantum well", J. Appl. Phys. 84, 6312-6317 (1998).
  • 6. S.M.D. Tosoh: Product Data Sheets (www.tosohsmd.com).
  • 7. E.K. Sichel and J.I Pankove, "Thermal conductivity of GaN, 25-360 K", J. Phys. Chem. Solids 38, 30 (1977).
  • 8. G.A. Slack, R.A. Tanzil, R.O. Pohl, and J.W. Vandersande, "The intrinsic thermal conductivity of A1N", J. Phys. Chem. Sofids 48, 641-647 (1987).
  • 9. Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, Springer, Berlin, 1962.
  • 10. G.Y. Zhao, H. Ishikawa, G. Yu, T. Egawa, J. Watanabe, T. Soga, T. Jimbo, and M. Umeno, "Thermo-optical nonlinearity of GaN grown by metalorganic chemical-vapour deposition", Appl. Phys. Lett. 73, 22-24 (1998).
  • 12. X. Tang, Y. Yuan, K. Wonchotigul, M.G. Spencer, H. Ying, and Z. Ling, "Study of thermo-optic properties of aluminium nitride waveguides", Proc. SPIE 3283, 938-941 (1998).
  • 13. Y.S. Toulokian, R.W. Powell, C.Y. Ho, and P.G. Klemens, Thermophysical Properties of Matter 1-2, IFI/Plenum, New York, 1970.
  • 14. D.I. Florescu, V.A. Asnin, L.G. Mourokh, F.H. Pollak, R.J. Molnar, and C.E.C. Wood, "High spatial resolution thermal conductivity and Raman spectroscopy investigation of hydride vapour phase epitaxy grown n-GaN/sapphire (0001): Doping dependence", J. Appl. Phys. 88, 3295-3300 (2000).
  • 15. P. Maćkowiak and W. Nakwaski, "Detailed threshold analysis of UV-emitting nitride vertical-cavity surface-emitting lasers", J. Physics D: Appl. Physics 31, 2479-2484 (1998).
  • 16. P. Maćkowiak and W. Nakwaski, "Designing guidelines for possible continuous-wave-operating nitride vertical-cavity surface-emitting lasers", J. Physics D: Applied Physics 33, 642-653 (2000).
  • 17. P. Maćkowiak and W. Nakwaski, "Some aspects of designing an efficient nitride VCSEL resonator", J. Physics D: Applied Physics 34, 954-958 (2001).
  • 18. S.R. Jeon, Y.H. Song, H.J. Jang, G.M. Yang, S.W. Hwang, and S J. Son, "Lateral spreading in GaN-based light-emitting diodes utilising tunnel contact junctions", Appl. Phys. Lett. 78, 3265-3267 (2001).
  • 19. T. Takeuchi, G. Hasnain, S. Corzine; M. Huechen, R.P. Schneider, Jr., Ch. Kocot, M. Blomqvist, Y. Chang, D. Lefforge, M.R. Krames, L.W. Cook, and S.A. Stockman, "GaN-based light emitting diodes with tunnel junction", Jpn. J. Appl. Phys. 40, L861-L863 (2001).
  • 20. F. Della Sala, A. Di Carlo, and P. Lugli, F. Bernardini, V. Fiorentini, R. Scholz, and J.M. Jancu, "Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures", Appl. Phys. Lett. 74, 2002-2004 (1999).
  • 21. W. Shan, T.J. Schmidt, X .H. Yang, S.J. Hwang, and J.J. Song, "Temperature dependence of interband transitions in GaN grown by metalorganic chemical vapour deposition", Appl. Phys. Lett. 66, 985-987 (1995).
  • 22. H. Jiang and J. Singh, "Gain characteristics of InGaN-GaN quantum wells", IEEE J. Quantum Electron. 36, 1058-1064 (2000).
  • 23. A. Dmitriev and A. Oruzheinikov, "The rate of radiative recombination in nitride semiconductors and alloys", J. Appl. Phys. 86, 3241-3245 (1999).
  • 24. Y.C. Yeo, T.C. Chong, and MF. Li, "Electronic band structures and effective-mass parameters of wurtzite GaN and InN", J. Appl. Phys. 83, 1429-1436 (1998).
  • 25. M. Suzuki and T. Uenoyama, "Fir t-principles calculations of effective-mas parameters of A1N and GaN", Phys. Rev. B5 2, 8132-8139 (1995).
  • 26. Y.C. Yeo, T.C. Chong, M.F. Li, and W.J. Fan, "Analysis of optical gain and threshold current density of wurtzite InGaN/GaN/A1GaN quantum well lasers", J. Appl. Phys. 84, 1813-1819 (1998).
  • 27. A.T. Meney, E.P. O'Reilly, and A.R Adams, "Optical gain in wide bandgap GaN quantum well lasers", Semicond. Sci. Technol. 11, 897-903 (1996).
  • 28. A.F. Wright and J.S. Nelson, "Bowing parameters for zinc-blende Al1-xGaxN and Ga1-xInxN, Appl. Phys. Lett. 66, 3051-3053 (1995).
  • 29. A. Zukauskas, S. Juresenas, G. Kurilcik, G. Tamulaitis, M.S. Shur, R. Gaska, J.W. Yang, and M.A. Khan, "Finite-temperature, band gap renormalisation in highly photoexcited GaN epilayers", Phys. Stat. Sol. (b) 216, 501-504 (1999).
  • 30. J. Burm, K. Chu, W.A. Davis, W.J. Schaff, and L.F. Eastman, "Ultra-low resistive ohmic contacts on n-GaN using Si implantation", Appl. Phys. Lett. 70, 464-466 (1997).
  • 31. L.Ch. Chen, J.K. Ho, Ch.Sh. Jong, Ch.C. Chiu, K.K Shih, F.R Chen, J.J Kai, and L. Chang, "Oxidized Ni/Pt and Ni/Au ohmic contacts to p-type GaN", Appl. Phys. Lett. 76, 3703-3705 (2000).
  • 32. V.A. Smagley, P.G. Eliseev, and M. Osiński, "Comparison of model for optical gain in gallium nitride", Proc. SPIE 2994, 129-140 (1997).
  • 33. A. Vertikov, I. Ozden, and A.V. Nurmikko, "Diffusion and relaxation of excess carriers in InGaN quantum wells in localised versus extended states", J. Appl. Phys. 86, 4697-4699 ( 1999).
  • 34. P. Maćkowiak and W. Nakwaski, "Threshold currents of nitride vertical-cavity surface-emitting lasers with various active regions", MRS Internet J. Nitride Semicond. Research 3, Article 35, 1998.
  • 35. S.H. Park, S.L. Chuang, and D. Ahn, "Piezoelectric effects on many-body optical gain of zinc-blende and wurtzite GaN/AlGaN quantum-well laser ", Appl. Phys. Lett. 75, 1354-1356 (1999).
  • 36. H.X. Jiang and J.Y. Lin, "Mode spacing 'anomaly' in InGaN blue lasers", Appl. Phys. Lett. 74, 1066-1068 (1999).
  • 37. T. Someya, K. Tachibana, J. Lee, T. Kamiya, and Y. Arakawa, "Lasing emission from In0.1Ga0.9N vertical cavity surface emitting laser", Jpn. J. Appl. Phys. 37, L1424-L1426 (1998).
  • 38. Y.K. Song, H. Zhou, M. Diagne, A.V. Nurmikko, RP. Schneider Jr., C.P. Kuo, M.R. Krames, RS. Kern, C. Carter-Coman, and F.A. Kish, "A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser", Appl. Phys. Lett. 76, 1662-1664 (2000).
  • 39. K.E. Waldrip, J. Han, J.J. Figel, H. Zhou, E. Makarena, and A.V. Nmmikko, "Stress engineering during metalorganic chemical vapour deposition of AlGaN/GaN distributed Bragg reflectors", Appl. Phys. Lett. 7 8, 3205-3207 (2001).
  • 40. T.T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, "Room temperature lasing at blue wavelengths in gallium nitride microcavities", Science 285, 1905-1906 (1999).
  • 41. H.M. Ng, D. Doppalapudi, D.E. Iliopouls, and T.D. Moustakas, "Distributed Bragg reflectors based on Aln/GaN multilayers", Appl. Phys. Lett. 74, 1036-1038 (1999).
  • 42. Y.K. Song, M. Diagne, H. Zhou, A.V. Nurmikko, C. Carter-Coman, R.S . Kern, F.A. Kish, and M.R. Kramers, "A vertical injection blue light emitting diode in substrate separated InGaN heterostructures", Appl. Phys. Lett. 74, 3720-3722 (1999).
  • 43. K. Domen, R. Soejima, A. Kuramata, K. Horino, S. Kubota, and T. Tanahashi, "Interwell inhomogeneity of carrier injection in InGaN/GaN/A1GaN multiquantum well lasers", Appl. Phys. Lett. 73, 2775-2777 (1998).
  • 44. N. Tessler and G. Eisenstein, "On carrier injection and gain dynamics in quantum well lasers", IEEE J. Quantum Electron. 29, 1586-1595 (1993).
  • 45. S.H. Park and S.L. Chuang, "Many-body optical gain of wurtzite Gan-based quantum-well lasers and comparision with experiment", Appl. Phys. Lett. 72, 287-289 (1998).
  • 46. S.J. Pearton, RG. Wilson, J.M. Zavada, J. Han, and R.J. Shul, "Thermal stability of 2H-implanted n- and p-type GaN", Appl. Phys. Lett. 73, 1877-1879 (1998).
  • 47. W.S. Wong, M. Kneissel, P. Mei, D.W. Treat, M. Teepe, and N.M. Johnson, "The integration of lnxGa 1-xN multiple-quantum-well laser diodes with copper substrate by laser lift-off', Jpn. J. Appl. Phys. 39, L1203-Ll205 (2000).
  • 48. T. Margalith, O. Buchinsky, D.A. Cohen, A.C. Abare, M. Hansen, S.P. DenBaars, and L.A. Coldren "Indium tin oxide contacts to gallium nitride optoelectronic devices", Appl. Phys. Lett. 74, 3930-3932 (1999).
Uwagi
Błędna numeracja pozycji bibliografi. Prawidłowa liczba pozycji 47.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA2-0007-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.