PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Plasmon polaritons in metal nanostructures : the optoelectronic route to nanotechnology

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the light of recent advances in subwavelength optics, the development of optical nanodevices is nowadays conceivable. Among the best candidates to act as the elementary components of such devices are nanoscale structures of noble metals. These materials are capable to sustain resonant electron oscillations (plasmons). This phenomenon gives rise to a spectrally selective optical response and a local field enhancement which can be used in the context of nano-optics. Furthermore, it allows to transduce the optical signals into electrical ones (and vice wersa). Here, we demonstrate an optical nanodevice based on plasmon resonances in gold nanostructures. The adequate metal structures were produced by electron-beam-lithography. The basic operating functions of the device, namely signal processing on the nanoscale and its interfacing on the microscale, were experimentally observed in the optical near-field by photon scanning tunneling microscopy. Furthermore, as a numerical method for validation of the near-field observations the Green's Dyadic Technique is pointed out.
Twórcy
autor
  • Institut for Experimental Physics, Karl-Franzens-University Graz and Erwin Schrodinger Institute for Nanoscale Research, 5 Universitatsplatz Str., A-8010 Graz, Austria
autor
  • Institut for Experimental Physics, Karl-Franzens-University Graz and Erwin Schrodinger Institute for Nanoscale Research, 5 Universitatsplatz Str., A-8010 Graz, Austria
autor
  • Institut for Experimental Physics, Karl-Franzens-University Graz and Erwin Schrodinger Institute for Nanoscale Research, 5 Universitatsplatz Str., A-8010 Graz, Austria
autor
  • Institut for Experimental Physics, Karl-Franzens-University Graz and Erwin Schrodinger Institute for Nanoscale Research, 5 Universitatsplatz Str., A-8010 Graz, Austria
  • Institut for Experimental Physics, Karl-Franzens-University Graz and Erwin Schrodinger Institute for Nanoscale Research, 5 Universitatsplatz Str., A-8010 Graz, Austria
autor
  • Université Paris 7, Interfaces, Traitements, Organisation et Dynamique des Systémes, 1 rue Guy de La Brosse, UPRES-A 7086, 75005 Paris, France
autor
  • Institut for Experimental Physics, Karl-Franzens-University Graz and Erwin Schrodinger Institute for Nanoscale Research, 5 Universitatsplatz Str., A-8010 Graz, Austria
  • Institut for Experimental Physics, Karl-Franzens-University Graz and Erwin Schrodinger Institute for Nanoscale Research, 5 Universitatsplatz Str., A-8010 Graz, Austria
Bibliografia
  • 1. H. Raether, Surface Plasmons, Springer-Verlag, Berlin, 1988.
  • 2. W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, "Optical dichroism of lithographically designed silver nanoparticle films", Opt. Lett. 21, 1099 (1996).
  • 3. W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, "Thin films by regular patterns of metal nanoparticles: tailoring the optical properties by nanodesign", Appl. Phys. B63, 381 (1996).
  • 4. E. Abbe, "Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung", Archiv. f. Mikroskop. Anat. 9, 413 (1873).
  • 5. H. Abdeldayem, D. O. Frazier, M. S. Paley, and W. K. Witherow, "Recent advances in photonic devices for optical computing", Tech. Rep. NASA - Marshall Space Flight Center, Huntsville, http://science.nasa.gov/headlines/images//nanosecond/thepaper.pdf (2000).
  • 6. Y. S. Park, "Recent advances and future trends in moderm electronics", Int. J. High Speed Electr. and Sys. 10, 1 (2000).
  • 7. J. Tominaga, C. Mihalcea, D. Büchel, H. Fukuda, T. Nakano, N. Atoda, H. Fuji, and. Kikikawa, "Local plasmon photonic transistor", Appl. Phys. Lett. 78, 2417 (2001).
  • 8. R. C. Reddick, R. J. Warmack, and T. L. Ferrell,"New form of scanning optical microscopy", Phys. Rev. B39, 767 (1989).
  • 9. K. Karrai and R. D. Grober, "Piezoelectric tip-sample distance control for near field optical microscopes", Appl. Phys. Lett. 66, 1842 (1995).
  • 10. A. G. T. Ruiter, J. A. Veerman, K. O. V. D. Werf, and N. F. van Hulst, "Tuning fork shear-force feedback", Appl. Phys. Lett. 71, 28 (1997).
  • 11. E. Betzig, P. L. Finn, and J. S. Weiner, "Combined hear force and near-field scanning optical microscopy" Appl. Phys. Lett. 60, 2484 (1992).
  • 12. R. Toledo-Crow, P. C. Yan, Y. Chen, and M. Vaez-Iravani, "Near-field differential scanning optical microscope with atomic force regulation", Appl. Phys. Lett. 60, 2957 (1992).
  • 13. P. Lambelet, A. Sayah, M. Pfeffer, C. Philipona, and F. Marquis-Weible, "Chemically etched fibre tips for near-field optical microscopy: a proces for smoother tips", Appl. Opt. 37, 7289 (1998).
  • 14. C. Girard and A. Dereux, "Near-field optics theories", Rep. Prog. Phys. 59, 657 (1996).
  • 15. J. C. Weeber, E. Bourillot, A. Dereux, J. P. Goudonnet, Y. Chen, and C. Girard, "Observation of light confinement effects with a near-field optical microscope", Phys. Rev. Lett. 77, 5332 (1996).
  • 16. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles", Phys. Rev. Lett. 82, 2590 (1999).
  • 17. D. Palik, Handbook of Optical Constants of Solids, Anal. Chem., 1985.
  • 18. M. Salerno, N. Felidj, J. R. Krenn, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Near-field optical response of a two-dimensional grating of gold nanoparticles", Phys. Rev. B63, 16542 (2001).
  • 19. H. Ditlbacher, R. Krenn, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Spectrally coded optical data storage by metal nanoparticles", Opt. Lett. 25, 563 (2000).
  • 20. T. Schalkahammer, A. Leitner, F. R. Aussenegg, G. Bauer, and F. Pittner, "Optical nanocluster plasmon-sensors as transducers for bioaffinity interactions", Proc. SPIE 3253, 12 (1998).
  • 21. R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, Nanoscale chemical analysis by tip-enhanced Raman spectroscopy", Chem. Phys. Lett. 318, 131 (2000).
  • 22. B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance", Phys. Rev. Lett. 84, 4721 (2000).
  • 23. B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, and F. R. Aussenegg, "Surface plasmon propagation in microscale metal stripes", Appl. Phys. Lett. 79, 51 (2001).
  • 24. J. R. Krenn, M. Salerno, N. Felidj, B. Lamprecht, G. Schider, A. Leitner, F. R. Aussenegg, J. C. Weeber, A. Dereux, and J. P. Goudonnet, "Light field propagation by metal micro- and nanostructures", J. Microscopy 202, 122 (2001).
  • 25. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmision through subwavelength holes", Phys. Rev. B58, 6779 (1998).
  • 26. S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Full photonic band gap for surface modes in the visible", Phys. Rev. Lett. 77, 2670 (1996).
  • 27. M. G. Salt and W. L. Barnes, "Photonic band gaps in guided modes of textured metallic microcavities", Opt. Comm. 166, 151 (1999).
  • 28. B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Femto-second decay-time measurement of electron-plasma oscillation in nanolithographically designed silver particles", Appl. Phys. B 64, 269 (1997).
  • 29. B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Particle-plasmon decay-time determination by measuring the optical near-field's autocorrelation: influence of inhomogeneous line broadening", Appl. Phys. B69, 223 (1999).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA2-0006-0097
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.