PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

HgCdTe infrared detectors

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
HgCdTe infrared detectors have been intensively developed over the past forty years since the first synthesis of this compound semiconductor in 1958. Today, HgCdTe is the most widely used infrared detector material. This paper reviews key developments in the crystal growth and device history of this important technology. Projections and challenges for the continued evolution of this technology are summarized
Twórcy
autor
  • Santa Barbara Research Center, Raytheon Systems Company, 75 Coromar Drive, Goleta, CA 93117, USA, p.norton@verizon.net
Bibliografia
  • 1. W. D. Lawson, S. Nielson, E. H. Putley, and A. S. Young, "Preparation and properties of HgTe and mixed crystals of HgTe-CdTe," J. Phys. Chem. Solids 9, 325-329 (1959).
  • 2. D. Long and J. L. Schmit, "Mercury-cadmium telluride and closely related alloys," in Semiconductors and Semimetals, Vol. 5, pp. 175-255, edited by R. K. Willardson and A. C. Beer, Academic Press, New York (1970).
  • 3. G. L. Hansen, J. L. Schmit, and T. N. Casselman, "Energy gap versus alloy composition and temperature in Hg1_xCdxTe," J. Appl. Phys. 53, 7099-7101 (1982).
  • 4. M. W. Scott, "Energy gap in Hg1_xCdx Te by optical absorption", J. Appl. Phys. 40, 4077-4081 (1969).
  • 5. Y. Kanai and K. Shohno, "Dielectric constant of PbTe", Jap. J. Appl. Phys. 1, 239 (1962).
  • 6. P. B. Alien and M. L. Cohen, "Carrier concentration dependent superconductivity in tin telluride and germanium telluride", Phys. Rev. 177, 704-706 (1969).
  • 7. L. R. S. Ladd, "Cadmium telluride infrared transmitting material", Infrared Phys. 6, 145-51 (966)
  • 8. V. Prakash, "The optical absorption edge in the lead salts and its variation with temperature and pressure", Harvard University contract NONR-1866 10 NR-017-308, p. 241, AD 656 591, 1967; B. Houston, et al. "Elastic constants, thermal expansion, and Debye temperature of lead telluride", J. Appl. Phys. 39, 3913-3916 (1968).
  • 9. H. Ibach, "Thermal expansion of silicon and zinc oxide", Physics Status Solidi 31, 625-634 (1969). Results from a half-dozen earlier papers are summarized in Integrated Silicon Device Technology, Vol. V, pp. 20-21, Physical/electrical properties of silicon. Research Triangle Institute, AD 605 558, 7/64.
  • 10. The data in this figure was compiled from a variety of sources. A recent reference which can be consulted is: Semiconductor Alloys, Physics and Materials Engineering, by An-Ban Chen and Arden Sher, Microdevices, Physics and Fabrication Technologies, Plenum Press, New York, 1995.
  • 11. M. A. Kinch and A. Yariv, "Performance limitations of GaAs/AlGaAs infrared superlattices," Appl. Phys. Lett. 55, 2093-2095 (1989).
  • 12. B. F. Levine, "Quantum-well infrared photodetectors," J. Appl. Phys. 74, Rl-R81 (1993).
  • 13. A. Rogalski and K. Jóźwikowski, "GaAs/AlGaAs quantum well infrared photoconductors versus HgCdTe photodiodes for long-wavelength infrared applications", Opt. Eng. 35, 1477-1484 (1994).
  • 14. A. Rogalski and M. Razeghi "Narrow-gap semiconductor photodiodes", Proc. SPIE 3287, 2-13 (1997).
  • 15. A. Singh and D. A. Cardimona, "Design issues related to low dark current in QWIPs", Proc. SPIE 2999, 46-54 (1997).
  • 16. S. D. Gunapala, J. K. Liu, J. S. Park, M. Sundaram, C. A. Shott, T. Hoelter, T. L. Lin, S. T. Massie, P. D. Maker, R. E. Muller, and G. Sarusi, "9-μm cutoff 256x256 GaAs/AlxGa1_xAs quantum well infrared photodetector hand-held camera", IEEE Trans. Electron Devices 44, 51-57 (1997) .
  • 17. Properties of Narrow Gap Cd-based Compounds, edited by P. Capper, EMIS Datareviews Series, No 10, INSPEC, The Institution of Electrical Engineers, London, 1994.
  • 18. Prior to about 1993 this series was known as The U.S. Workshop on the Physics and Chemistry of Mercury Cadmium Telluride and was published by the American Vacuum Society.
  • 19. C. T. Elliott, D. Day, and B. J. Wilson, "An integrating detector for serial scan thermal imaging", Infrared Phys. 22, 31-42 (1982).
  • 20. R. Thorn, "High density infrared detector arrays", U.S. Patent No 4,039,833, 8/2/77.
  • 21. R. C. Jones, "A method of describing the detectivity of photoconductive cells", Rev. Sci. Instr. 24, 1035-1040 (1953).
  • 22. D. Scribner, J. Schuler, P. Wanen, M. Satyshur, and M. Kruer, "Infrared color vision: separating object from background", Proc. SPIE 3379, 2-13 (1998).
  • 23. E. Schulte, "Two terminal multi-band infrared radiation detector", U.S. Patent No 5,113,076, 5/12/92,
  • 24. T. J. de Lyon, B. Baumgratz, G. R. Chapman, E. Gordon, M. D. Gorwitz, A. T. Hunter, M. D. Jack, J. E. Jensen, W. Johnson, K. Kosai, W. Larsen, G. L. Olson, M. Sen, and B. Walker, "Epitaxial growth of HgCdTe 1.55 μm avalanche photodiodes by MBE", Proc. SPIE 3629, 256-267 (1999).
  • 25. P. Norton, "Status of infrared detectors", Proc. SPIE 3379, 102-114 (1998).
  • 26. M. Weiler, S. Tobin, M. Hutchins, and P. Norton, "Recent advances in composition control for VLWIR HgCdTe heterojunction photodiodes for remote sensing applications at 60 K", Proc. ECS, Boston, 1998.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA2-0006-0090
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.