PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wojskowe dalmierze laserowe

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Military laser rangefinders
Języki publikacji
PL
Abstrakty
PL
Zaprezentowano główne kierunki badań dotyczących laserów "bezpiecznych dla oka" z przeznaczeniem do dalmierzy laserowych, przy czym szczególny nacisk położono na przedstawienie prac naukowo-badawczych otyczących nowych, laserowych ośrodków czynnych, nieliniowych absorberów i krystalicznych przesuwników częstotliwości. Zaprezentowano ponadto wyniki prac podjętych w Instytucie Optoelektroniki WAT w 1995 roku nad bezpiecznymi laserami, których wynikiem między innymi jest model dalmierza laserowego z odbiorem podszumowym, całkowicie bezpieczny dla oka.
EN
The paper presents the current state and prospects of the development of the military laser rangefinders. The main trends in the researches concerning eyesafe lasers with designation to application in the rangefinders have been presented. The great attention is paid for the scientific works concerning the new laser materials, saturable absorbers and solid state Raman shifters. Moreover the results of such works started in the Institute of Optoelectronics since 1995 have been presented. The main result of the works is the model of laser rangefinder with receiving echoes of signals above the noise level, which is fully eyesafe.
Rocznik
Strony
21--63
Opis fizyczny
Bibliogr. 110 poz.
Twórcy
autor
autor
autor
autor
autor
  • Wojskowa Akademia Techniczna, Instytut Optoelektroniki, 00-908 Warszawa, ul. S. Kaliskiego 2
Bibliografia
  • [1] T. H. Maiman, Stimulated Optical Radiation in Ruby, Nature, Vol. 187 (1960), 493-494.
  • [2] L. K. Matthews, G. V. Garcia, Laser and Eye Safety in the Laboratory, SPIE Press, Vol. PM19 (1994).
  • [3] M. Nowicki, Materiały X Krajowej Szkoty Optoelektroniki, Zegrze 1995.
  • [4] E. Gregor, D. E. Nieuwsma, R. D. Stultz, 20 Hz Eye safe Laser Rangefinder for Air Defense, SPIE, Vol. 1207 (1990), 124-134.
  • [5] Norma DIN-58215, Laserschutzfilter and Laserschutzbrillen, 1986.
  • [6] P. A. Hartwig, J. Laser Appl., 4 (1992), 11-12.
  • [7] G. L. Smolka, R. P. Jones, Biophotonics International, 2(2) (1995), 42-48.
  • [8] M. Mclear, Laser Focus World, 8 (1992), 111-116.
  • [9] R. Pengelley, OEC's eye-safe laser option, International Defense Review, 2 (1990).
  • [10] A. M. Johnson, J. Nunez, L. Bushor, Laser rangefinders - today's military & industrial systems, Electro-Optical System Design, 3 (1976).
  • [11] J. Marczak, Impulsowy Dalmierz Laserowy z Podszumowym Odbiorem Sygnału Echa, Problemy Techniki Uzbrojenia i Radiolokacji, XXVII, Zeszyt 66 (1998), 117-128.
  • [12] J. Marczak, A. Gawlikowski, A. Młodzianko, M. Wypych, M. Zygmunt, Model Półprzewodnikowego Dalmierza Laserowego Klasy 1 Bezpieczeństwa, Problemy Techniki Uzbrojenia i Radiolokacji, XXVIII, Zeszyt 70 (1999), 161-172.
  • [13] W. Koechner, Solid-State Laser Engineering, 4th Ed., Springer-Verlag, Berlin-Hedelberg 1997.
  • [14] Z. Mierczyk, Investigation of saturable absorbers for passive Q-switching of diode pumped lasers, Optoelectronica, Vol. 4, 1 (1996), 145-150.
  • [15] Z. Mierczyk, M. Kwaśny, J. Czeszko, Dye foils with increased durability for passive Q-switching in a 1064 nm laser, Proc. SPIE, 859 (1987), 14-20.
  • [16] Z. Mierczyk, S. Kaczmarek, J. Czeszko, Wpływ parametrów konstrukcyjnych pasywnego modulatora dobroci rezonatora lasera YAG:Nd3+ na jego właściwości generacyjne, Biul. WAT, XXXV, 4 (1986), 67-74.
  • [17] Z. Puzewicz, Z. Mierczyk, Examination of thermal stability and laser characteristics of LiF:[F2] modulators, Optica Applicata, Vol. XIX, 2 (1989), 175-185.
  • [18] Y. Shimony, Y. Kalisky, B. H. T. Chai, Quantitative studies of CO+ :YA G as a saturable absorber for Nd:YAG laser, Optical Materials, 4 (1995), 547-551.
  • [19] Z. Frukacz, T. Łukasiewicz, M. Malinowski, Z. Mierczyk, Growth of Cr4+:YAG crystals for applications in laser technique, Proc. SPIE, 2373 (1995), 74-78.
  • [20] C. M. Johnson, Laser Radar, Chap. 37 of „Radar Handbook", McGraw-Hill Comp., New York 1970.
  • [21] A. V. Jelalian, Laser Radar System, Artech House Boston-London 1992.
  • [22] C. G. Bachman, Laser Radar System and Techniques, Artech Dedham 1979.
  • [23] J. Marczak, Dalmierz Laserowy z Koherentnym Odbiorem Sygnału Echa, Materiały Konferencyjne, Tom I, s. 208-217, I konferencja uzbrojenia n.t. naukowe aspekty technik uzbrojenia, Jawor k/Soliny, 27-29 listopad 1996.
  • [24] American National Standard for the Safe Use of Lasers, ANSI Z-136.1-1993, 1993.
  • [25] Laser Rangefinder, 11th Ed. 1998-99, Jane's Inform. Group Ltd., Couldson, UK, 1998.
  • [26] R. C. Renairi and A. M. Johnson, MELIOS - Status Report of the U. S. Army: Eye safe Laser Rangefinder Program, SPIE, Vol. 1207 (1990), 112.
  • [27] M. B. Camargo, R. D. Stultz, M. Birnbaum, Passive Q-switching of Mt Er3÷:Y3A15 012 laser at 1.64 pm, Appl. Phys. Lett., 66 (22) (1995), 2940-2942.
  • [28] B. Simondi-Teisseire, B. Viana, D. Vivien, Near Infrared Er3+ Laser Properties in Melilite Type Crystals, OSA TOPS, Advanced Solid-State Lasers ,Vol. 10 (1997) 467-472.
  • [29] A. Braud, S. Girard, J. L. Doualan, R. Moncorge, M. Diaf, M. Thuau, Proper ties of the 1.5 and 2.3 pm laser emissions of various Tm doped crystals with Tb or Yb ions, OSA TOPS, Advanced Solid-State Lasers, Vol. 26 (1999), 476-480.
  • [30] G. Rustad, K. Stenersen, Low Threshold Laser-Diode Side-Pumped Tm: YAG an Tm: Ho; YAG Lasers, IEEE J. Of Selected Topics in Q-E, Vol. 3, No 1 (1997), 82-89.
  • [31] A. G. Okhrjmchuk, A. V. Shestakov, Performance of YAG:Cr4+ laser crystal Optical Materials, 3 (1994), 1-13.
  • [32] A-F. Obaton, J. Bernard, C. Parent, G. le Flem, J. M. Fernandez-Navarro J-L. Adam, M. J. Myers, G. Boulon, New laser materials for eye-safe sources Yb3+-Er3+ - codoped phosphate glasses, OSA Proc. on Advanced Solid-State Lasers Vol. 26 (1999), 655-657.
  • [33] V. S. Sudesh, J. A. Piper, Spectroscopy, modeling, and laser operation of thulium-doped crystals at 2.3 pm, IEEE J. Quant. Electron., Vol. 36, No 7 (2000), 897-884.
  • [34] A. Diening, P. E.-A. Mobert, G. Hubert, Diode-pumped continues-wave, quasi-continues-wave, and Q-switched laser operation of Yb3+ , Tm3+ :YLit4 at 1.5 and 2.3 pm, J. Appl. Phys., Vol. 84, No 11 (1998), 5900-5904.
  • [35] A. Braud, S. Girard, J. L. Doulan, R. Moncorge, Spectroscopy and fluorescence dynamics of (Tm3+ , Tb3+ ) and (Tm3+ , Eu3+ ) doped LiYF4 single crystals for 1.5 pm laser operation, IEEE J. Quant. Electron., Vol. 34, No 11 (1998), 2246-2255.
  • [36] L. Deloach, R. H. Page, G. D Wilke, S. A. Payne, W. F. Krupke, Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media, IEEE J. Quant. Electron., Vol. 32, No 6 (1996), 885-895.
  • [37] J. C. Van den Heuvel, F. J. M. Van Putten, Short-pulse, eye-safe Nd:YAG laser using cavity-dumping, IEEE J. Quant. Electron., Vol. 34, No 5 (1998), 920-925.
  • [38] D. L. Hutt, J.-M. Theriault, V. G. Larochelle, P. Mathieu, D. Bonnier, Estimating atmospheric extinction for eye safe laser rangefinders, Opt. Eng., Vol. 33, No 11 (1994), 3762-3773.
  • [39] S. K. Wong, P. Mathieu, P. Pace, Eye-safe Nd:YAG laser, Appl. Phys. Lett., Vol. 57, No 7 (1990), 650-652.
  • [40] R. E. Peale, H. Weidner, W. A. Mcclintic, Er3+ :Sr5(VO4)3F: A Potential Passive Q-Switch for Er-Glass Lasers, OSA Proc. on Advanced Solid-State Lasers, Vol. 24 (1995), 519-522.
  • [41] R. D. Stultz, M. B. Camargo, M. Birnbaum, Divalent Uranium and Cobalt Saturable Absorber Q-Switches at 1.5 pm, OSA Proc. on Advanced Solid-State Lasers, Vol. 24 (1995), 460-464.
  • [42] M. B. Camargo, R. D. Stultz, M. Birnbaum, Passive Q-switching of the Erbium: Glass Laser using Er3+:CaF2, OSA TOPS on Advanced Solid-State Lasers, Vol. 1 (1996), 454-457.
  • [43] R. M. Boiko, A. G. Okhrimchuk, A. V. Shestakov, Glass ceramics Co2+ saturable absorber Q-switch for 1.3-1.6 Am spectral region, OSA Proc. on Advanced Solid-State Lasers, TOPS, Vol. 19 (1998), 24-25.
  • [44] M. Birnbaum, M. B. Camargo, S. Lee, F. Unlu, and R. D. Stultz, Co2+:ZnSe Saturable Absorber Q-switch for the 1.54 pm Er3+ :Yb3+ :Glass Laser, OSA TOPS Advanced Solid-State Lasers, Vol. 10 (1997), 148-151.
  • [45] R. D. Stultz, M. B. Camargo, M. Birnbaum, Passive Q-switch at 1.53 pm using divalent uranium ions in calcium fluoride, J. Appl. Phys., 78(5) (1995), 2959-2961.
  • [46] A. V. Podlipensky, V. G. shcherbitsky, N. V. Kuleshov, V. P. Mikhailov, Cr2+:ZnSe and Co2+ :ZnSe saturable-absorber Q switches for 1.54 pm Er: glass lasers, Opt. Lett., Vol. 24, No 14 (1999), 960-962.
  • [47] T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, R. C. Powell, Raman spectroscopy of crystals for stimulated Raman scattering, Optical Materials, 11 (1999), 307-314.
  • [48] P. G. Zverev, T. T. Basiev, A. M. Prokhorov, Stimulated Raman scattering of laser radiation in Raman crystals, Optical Materials, 11 (1999), 335-352.
  • [49] J. T. LIN, Non-linear crystals for tunable coherent sources, Optical and Quantum Electronics, 22 (1990), 283-313.
  • [50] V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Springer Series in Optical Sciences, Vol. 64 (1997).
  • [51] E. Snitzer, R. Woodcock, Yb3+-Er3+ glass laser, Apll. Phys. Lett., Vol. 6, No 3 (1965), 45-46.
  • [52] J. N. Sandoe, P. H Sarkies, S. Parke, Variation of Er3+ cross section for stimulated emission with glass composition, J. Phys. D: Appl. Phys., Vol. 5 (1972), 1788-1799.
  • [53] J. G. Edwards, J. N. Sandoe, A theoretical study of the Nd:Yb:Er: glass laser, J. Phys. D: Appl. Phys., Vol. 7 (1974), 1078-1095.
  • [54] V. P. Gapontsev, S. M. Matisin, A. A. Isineev, V. B. Kravchenko, Erbium glass lasers and their applications, Opt. Laser Techn. (1982), 189-196.
  • [55] V. P. Gapontsev, S. M. Matisin, A. A. Isineev, Channels of energy losses in erbium laser glasses in the stimulated emission process, Opt. Commun., Vol. 46, No 3, 4, (1983), 226-230.
  • [56] M. Lukac, M. Marincek, Energy storage and heat deposition in flashlamp-pumper sensitized erbium glass lasers, IEEE J. Quant. Electron., Vol. 26, No 10 (1990), 1779-1787.
  • [57] B. Majaron, M. Lukac, M. Copic, Population dynamics in Yb:Er:phosphate glass under neodymium laser pumping, IEEE J. Quant. Electron., Vol. 31, No 2 (1995), 301-308.
  • [58] S. Jiang, J. Myers, D. Rhonehouse, M. Myers, R. Belford, S. Hamlin, Laser and thermal performance of a new erbium doped phosphate glass, Ed. Kigre, Inc. Hilton Head Island, 1990.
  • [59] R. Wu, S. J. Hamlin, J. A. Hutchinson, L. T. Marshall, 1.2 J High Energy Diode Pumped 1535 nm Er3+, Yb3+ :Glass Laser, Proc. of Conference on Lasers and Electro-Optics Europe, Hamburg'96, IEEE Catalog No 96TH8161, CTuLI, 1996.
  • [60] S. Jiang, J. Myers, D. Rhonehouse, M. Myers, R. Belford, S. Hamlin, Laser and thermal performance of a new erbium doped phosphate glass, SPIE, Vol. 2138 (1994).
  • [61] S. Jiang, J. D. Myers, R. Wu, G. M. Bishop, D. L. Rhonehouse, M. J. Myers, S. J. Hamlin, Chemically strengthened Er3+ , Nd3+ doped phosphate laser glasses. SPIE, Vol. 2379 (1995).
  • [62] A. G. Okhrimchuk, A. V. Shestakov, Performance of YAG:Cr4+ laser crystal, Optical Materials, 3 (1994), 1-13.
  • [63] Н. J. Бородин, В. А. Житнюк, А. Г. Охгимчук, А. Б. Iцестаков, Генерациjа области длин волн 1.34-1.б µм лазера на основе УЗ А15 012: Сг4+, Извиестнjа Академии Наук -- Сериа Физическая, Vo1. 54 (1990), 1500-1506.
  • [64] A. Sugimoto, Y. Nobe, K. Yamagishi, Crystal growth and optical characterization of Cr,Ca:Y3A15 012, J. Crystal Growth, Vol. 1403 (1994), 49-354.
  • [65] H. Lotem, Y. Kalisky, J. Kagan, D. Sagie, A 2 μm holmium laser, IEEE Quant. Electron., Vol. 24, No 6 (1988), 1193-1200.
  • [66] G. Huber, E. W. Duczynski, K. Petermann, Laser pumping of Ho-, Tm-, Er-dopes garnet lasers at room temperature, IEEE J. Quant. Electron., Vol. 24, No 6 (1988), 920-923.
  • [67] T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, Spectroscopy and diode laser-pumped operation of Tm:Ho:YAG, IEEE J. Quant. Electron., Vol. 24, No E (1988), 924-933.
  • [68] P. J. Morris, W. Luthy, H. P. Weber, Operation of resonantly pumped Tm:Ho: YAC in active mirror mode, Opt. Commun., Vol. 104, No 1, 2, 3 (1993), 97-101.
  • [69] P. B. Phua, K. S. Lai, R. F. Wu, Y. L. Lim, E. Lau, Room-temperature operation of a multiwatt Tm: YAG laser pumped by a 1 μm Nd: YAG laser, Opt. Lett., Vol. 25, No 9 (2000), 619-621.
  • [70] S. T. Bowman, M. J. Winings, R. C. Y. Auyeung, J. E. Tucker, S. K. Searles, B. J. Feldman, Laser and spectral properties of Cr,Tm,Ho:YAG at 2.1 μm, IEEE J Quant. Electron., Vol. 27, No 9 (1991), 2142-2149.
  • [71] S. T. Bowman, M. J. Winings, S. K. Searles, B. J. Feldman, Short-pulsed 2.1 μm laser performance of Cr,Tm,Ho: YAG, IEEE J. Quant. Electron., Vol. 27, No 5 (1991), 2129-2131.
  • [72] R. Wu, J. D. Myers, M. J. Myers, T. Wisnewski, 50 Hz Diode Pumped Er: Glass Eye-Safe Laser, OSA TOPS, Advanced Solid-State Lasers, Vol. 26 (1999), 336-340.
  • [73] Properties of IRE phosphate laser glass, Product Catalog IRE 1998.
  • [74] Z. Mierczyk, M. Kwaśny, K. Kopczyński A. Gietka, T. Łukasiewicz, J. Kisielewski, Z. Frukacz, R. Stępień, K. Jędrzejewski, Er3+ and Yb3+ doped active media for ,"eye safe" laser systems, J. Alloys & Compounds, Vol. 300-301 (2000), 398-406.
  • [75] F. Gan, Laser Materials, World Scientific Publ. Co., Singapore, New Jersey, London 1995
  • [76] Properties of YA1O3:Er crystals, Product Catalog ELS Co. 1998.
  • [77] N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Michailov, A. A. Kornienko, E. B. Dunina, S. Hartung, G. Huber, Excited State Absorption and 1.5 μm Laser Oscillation of Er3+ in KY(W04)2, OSA TOPS, Advanced Solid-State Lasers, Vol. 19 (1998), 472-477.
  • [78] R. E. Peale, H. Weidner, F. G. Anderson, N. M. Khaidukov, Spectroscopy of Er3+ in K2 YF5, OSA TOPS, Advanced Solid-State Lasers, Vol. 10 (1997), 462-466.
  • [79] B. Sliviondi-Teisseire, B. Viana, D. Vivien, A. M. Lejus, Yb3+ to EP+ energy transfer and rate equations formalism in the eye safe laser material Yb:Er:Ca2 Al2Si07, Optical Materials, 6 (1996), 267-274.
  • [80] R. Moncorge, J. A. Capobianco, M. Bettinelli, E. Cavalli, S. Girard, Y. Guyot, Cr:MgSiO3, a Cr doped crystal with long fluorescence lifetime and broad-band emission around 1.52 μm, OSA TOPS, Advanced Solid-State Lasers, Vol. 19 (1998), 484-488.
  • [81] Z. Mierczyk, M. Kwaśny, J. Mierczyk, J. Ciosek, Absorption-interference filters for highpower laser systems, Proc. SPIE, Vol. 3186 (1997), 177-179.
  • [82] P. Thony, B. Ferrand, E. Molva, 1.55 μm Passive Q-switched microchip laser, OSA TOPS, Advanced Solid-State Lasers, Vol. 19 (1998), 150-154.
  • [83] E. Gregor, D. E. Nieuwsma, R. D. Stultz, 20 Hz Eye safe Laser Rangefinder for Air Defense, Proc. SPIE, Vol. 1207 (1990), 124-134.
  • [84] V. P. Mikhailov, K. V. Yumashew, I. A. Denisov, P. V. Prokoshin, N. N. Posnov, D. Vivien, R. Moncorge, E. Ferrand, Y. Guyot, Passive Q-switch performance at 1.3 pm (1.5 µm) and nonlinear spectroscopy of Co221- :MgAl2 04 and Co2+ :MgAl11 019 crystals, OSA TOPS, Advanced Solid-State Lasers, Vol. 26 (1999), 317-324.
  • [85] T. Y. Tsai, M. Birnbaum, Co2+ :ZnS and Co2+ :ZnSe saturable absorber Q-switches, J. Appl. Phys., Vol. 87, No 1 (2000), 25-29.
  • [86] Z. Mierczyk, Investigations of saturable absorbers for „eye safe" giant-pulse laser systems, Optics and Opto-electronics, Theory, Devices and Applications, Vol. 2 (1998), 1033-1036.
  • [87] I. Lee, V. I. Villavicencio, High average power performance of an eyesafe KTP OPO based system, Proc. SPIE, Vol. 1864 (1993), 158.
  • [88] E. J. Woodbury, W. K. Ng, Ruby laser operation in the near IR, Proc. IRE, 50 (1962), 2367.
  • [89] A. Z. Grasiuk, I. G. Zubarev, High-power tunable IR raman lasers, Appl. Phys., 17 (1978), 211-232.
  • [90] D. G. Bruns, H. W. Bruesselabach, H. D. Stovall, D. A. Rockwell, Scalabla visible Nd: YAG pumped raman laser source, IEEE J. Quant. Electron., Vol. 18, No 8 (1982), 1246-1252.
  • [91] D. C. Hanna, D. J. Pointer, D. J. Pratt, Stimulated raman scattering of picosecond light pulses in hydrogen, deuterium and methane, IEEE J. Quant. Electron., Vol. 22, No 2 (1986), 332-336.
  • [92] R. W. Nichols, W. K. Ng, Raman shifted Nd: YAG class I eye-safe laser development, SPIE, Vol. 610 (1986), 92-98.
  • [93] P. Cerny, H. Jelinkova, Comparison of stimulated raman scattering of picosecond pulses in gaseous and solid state media, Proc. SPIE, Vol. 4016 (2000), 453-458.
  • [94] G. A. Pasmanik, Stimulated raman scattering augments DPSS lasers, Laser Focus World (Nov 1999), 137-144.
  • [95] A. A. Kaminski, H. J. Eichler, K. Ueda, N. K. Klassen, B. S. Redkin, L. E. Li, J. Findeisen, D. Jaque, J. Garcia-Sole, J. Fernandez, R. Balda, Properties of Nd3+ -doped and undoped tetragonal PbW04, NaY(W04)2, Ca W04, and undoped monoclinic ZnW04 and CdW04 as laser-active and stimulated raman scattering-active crystals, Appl. Opt., Vol. 38, No 21 (1999), 4533-4547.
  • [96] H. M. Pask, J. A. Piper, Diode-pumped LiI03 intracavity raman lasers, IEEE J. Quant. Electron., Vol. 36, No 8 (2000), 949-955.
  • [97] J. T. Murray, R. C. Powell, N. Peyghambarian, Generation of 1.5 μm radiation through intracavity solid-state raman shifting in Ba(NO3)2 nonlinear crystals, Opt. Lett., Vol. 20, No 9 (1995), 1017-1019.
  • [98] P. G. Zverev, T. T. Basev, W. Jia, H. Liu, Raman spectroscopic and nonlinear optical properties of barium nitrate crystal, OSA TOPS, Advanced Solid-State Lasers, Vol. 1 (1996), 554-559.
  • [99] J. T. Murray, W. L. Austin, R. C. Powell, 2.5 W eye-safe solid-state raman laser, OSA TOPS, Advanced Solid-State Lasers, Vol. 26 (1999), 575-578.
  • [100] K. Kopiczyński, Z. Mierczyk, S. Kaczmarek, Miniature eye-safe solid state lasers, Proc. SPIE, Vol. 3186 (1997), 292-295.
  • [101] V. P. Mikhailov, N. V. Kuleshov, N. I. Zhavoronkov, P. V. Prokoshin, K. V. Yumashev, V. A. Sandulenko, Optical absorption and nonlinear transmission of tetrahedral V3+ (d2) in yttrium aluminum garnet, Optical Materials, 2 (1993), 267-272.
  • [102] V. B. Sigachev, T. T. Basiev, M. E. Doroshenko, V. V. Osiko, A. G. Papashvili, 1.3 μm Neodymium Lasers Passively Q-Switched with Nd2+ :SrF2 and V3+ :YAG Crystals and Raman Shifting to Eye-Safe Region, OSA Proc., On Advanced Solid-State Lasers, (1995), Vol. 24, 454-459.
  • [103] V. P. Mikhailov, K. V. Yumashev, N. V. Kuleshov, A. M. Malyarevich, V. G. Shcherbitsky, P. V. Prokoshin, N. N. Posnov, Ultrafast Dynamics of Excited-State Absorption in V3+:YAG, OSA TOPS, Advanced Solid-State Lasers, Vol. 1 (1996), 591-594.
  • [104] Z. Mierczyk, Z. Frukacz, YAG:V3+ - new passive Q-switch for lasers generating radiation within near infrared range, Opto-Electr. Rev., Vol. 8, No 1 (2000), 67-74.
  • [105] J. Marczak, Z. Mierczyk, R. Ostrowski, Laser Nd: YAG: generacja długości fal bezpiecznych dla oka, Biul. WAT, XLIX, 2 (2000), 27-40.
  • [106] R. Ostrowski, J. Marczak, Z. Mierczyk, Generacja fal bezpiecznych dla oka z Nd: YAG, Problemy Techniki Uzbrojenia i Radiolokacji, XXVIII, Zeszyt 70 (1999), 153-160.
  • [107] R. Ostrowski, J. Marczak, Z. Mierczyk, 1.3 μm Nd: YAG laser passively and actively Q-switched, J. Tech. Phys., 41, No 3 (2000), 295-309.
  • [108] R. Ostrowski, J. Marczak, Z. Mierczyk, Eyesafe Nd: YAG laser, SPIE, Vol. 4237 (2000), 166-176.
  • [109] Ś. I. Bashakow, Sygnały i układy radiotechniczne, PWN, Warszawa 1991.
  • [110] R. C. Dixon, Spread spectrum systems with commercial application, John Wiley & Sons Inc., New York 1994.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA2-0005-0294
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.