PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Rola materiału wkładki w formowaniu strumienia kumulacyjnego (synteza danych literaturowych)

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Role of linear material in formation of cumulative flux (synthesis of literature data)
Języki publikacji
PL
Abstrakty
PL
Wśród najistotniejszych czynników określających zdolności penetracyjne pocisków kumulacyjnych jest rodzaj materiału wkładki. W niniejszej pracy dokonano zestawienia wyników badań i poglądów dotyczących jego wpływu na charakterystyki strumienia kumulacyjnego na podstawie dostępnej literatury. Zwrócono szczególną uwagę na następujące parametry, określające jakość materiału wkładki: jednorodność, stopień zanieczyszczenia, wielkość ziarna oraz temperatura rekrystalizacji.
EN
Among the most significant terms defining the penetration of the shaped charges is known to be the liner material. In this paper we have carried out the review of the published study results and conclusions concerning the material influence on the cumulation flux characteristics. Particular attention was directed onto the following parameters determining the liner material quality: homogeneity, the pollution degree, the grain size and the recristalization temperature.
Rocznik
Strony
41--64
Opis fizyczny
Bibliogr. 76 poz., rys., tab., wykr.
Twórcy
  • Wojskowa Akademia Techniczna, Wydział Uzbrojenia i Lotnictwa, 00-908 Warszawa, ul. S. Kaliskiego 2
  • Wojskowa Akademia Techniczna, Wydział Uzbrojenia i Lotnictwa, 00-908 Warszawa, ul. S. Kaliskiego 2
Bibliografia
  • [1] W. P. Walters, J. A. Zukas, Fundamentals of shaped charges, A Wiley-Interscience publication, New York 1989.
  • [2] Ф . А . Баум, Л. II, Oрленко, К П. Станюович, В . П. Челыев, Б. И. Шехтер Фuзыка взрыва, МосВа 1975.
  • [3] H. Nowak, D. Smoleński, Ładunki kumulacyjne w wojsku, górnictwie i przemyśle, MON, Warszawa 1974.
  • [4] E. Włodarczyk, O hydrodynamicznej stacjonarnej teorii kumulacji, Biul. WAT, XLII, 2 (1993).
  • [5] J. E. Bachofen, The use of analytical computer models in shaped charge design, Propellants, Explosives, Pyrotechnics, 18 (1993).
  • [6] K. Jach, R. Świerczyński, E. Włodarczyk, Symulacja komputerowa procesu tworzenia się strumienia kumulacyjnego i jego oddziaływanie na pancerz, Biul. WAT, XLVII, 12 (1992).
  • [7] K. G. Cowan, K. J. A. Mawella, D. J. Staning, B. Bourne, J. S. Jones, A. C. Kitney, Analytical code and hydrocode modelling and experimental characterisation of shaped charges containing conical tungsten liners, 18th International Symposium on Ballistics, San Antonio, Texas 1999, 449-457.
  • [8] Tie Fu Wang, He Rong Zhu, Wen Jun Ruan, Jian Long Zhou, Investigation of depleted uranium shaped charge liners, 15th International Symposium on Ballistics, Jerusalem, Israel 1995, 381-386.
  • [9] С. А. Кинвловский, Ю. А. ТРишин, Фuэuческuе аспекты кумуляции, ФГВ, 16, 5 (1980).
  • [10] E. Hirsh, The effect of the liner metallurgical state on the shaped charge jet breakup time, Propellants, Explosives, Pyrotechnics, 15 (1990), 166-176.
  • [11] F. J. Mostert, G. J. F. Smit, K. D. Wernyer, Analysis of jet properties of different liner materials manufactured under various conditions, 15th International Symposium on Ballistics, Jerusalem, May 1995, 297-304.
  • [12] M. Held, Determination of the material quality of copper shaped charge liners, Propellants, Explosives, Pyrotechnics, 10 (1985).
  • [13] A. Lichtenherger, M. Scharf, A. Bohman, Influence of the structural and metallurgical state of the liner on the performance of a shaped charge, 6gh International Symposium on Ballistics, Orlando, Florida 1981.
  • [14] P. C. Chou, W. J. Flis, Recent developments in shaped charge technology, Propellants, Explosives, Pyrotechnics, 11 (1986) 99-114.
  • [15] B. K. Mullah, K. J. A. Mawella, J. S. Jones, Soft capture of shaped charge liner jets, 16th International Symposium on Ballistics, San Francisco 1996, 503-507.
  • [16] F. I. Grace, Shaped charge jetting of metals at very high strain rates, Shock-wave and High-Strain-Rate Phenomena in Materials, (M. A. Meyers, L. E. Murr, K. P. Standhammer eds.), Marcel Dekker New York-Basel-Hong Kong 1992, 493-501.
  • [17] G. Birkhoff, D. P. Macdougall, E. M. Pugh, G. Taylor, Explosives with lined cavities, Journal of Applied Physics, 19 (1948), 563-582.
  • [18] М . А. Лаврентьев, Кумулятuвнu снаряд и принципы ezo работы, УМН, XII, 4 (1957), 41- 52.
  • [19] А. Я. Слгомонян, Проникание, МГУ, Москва 1974.
  • [20] Raport merytoryczny z realizacji etapu III pracy badawczej własnej nr 790, Badanie układów kumulacyjnych z wkładkami wytwarzanymi z materiałów spiekanych, WAT, Warszawa 1999.
  • [21] R. Di Persio, J. Simon, A. B. Merendino, Penetration of shaped-charge jets into metallic targets, BRL Raport No 1296, 1965.
  • [22] K. G. Cowan, B. Bourne, G. Dobison, Characterisation of shaped charges containing heavy metal conical liners, 16th International Symposium on Ballistics, San Francisco 1996, 613-622.
  • [23] TIE Fu Wang, HE Rong Zhu, Wen Jun Ruan, JIAN LONG ZHOU, Investigation of depleted uranium shaped charge liners, 15th International Symposium on Ballistics, Jerusalem, Israel 1995, 381-386.
  • [24] E. Włodarczyk, Wstęp do mechaniki wybuchu, PWN, Warszawa 1994.
  • [25] E. Włodarczyk, The impact of direction and velocity of the detonation wave and of the liner apex angle on parameters of a shaped charge jet and slug as well as an explosively formed penetrator, J. Tech. Phys., 35, 4 (1994), 393-413.
  • [26] W. S. Koski, F. A. Lucy, R. G. Skreffer, F. J. Willig, Fast jets from collapsing cylinders, J. Appl. Phys., 23, 12 (1952).
  • [27] K. Jach, Modelowanie komputerowe zjawisk kumulacyjnych, rozprawa hab. WAT, Warszawa 1990.
  • [28] K. Wiener, L. Shaw, S. Muelder, D. Breithaupt, D. Baum, Dynamic behavior of shear formed shaped charge liner, Propellants, Explosives, Pyrotechnics, 18 (1993), 345-351.
  • [29] A. Lichtenberger, Some criteria for choice of shaped charge copper liners, 11th International Symposium on Ballistics, Brussels, Belgium 1989.
  • [30] A. Lichtenberger L. Zernow, Increase of the ductility with cold pressed liners and recovery of jet fragments, 14th International Symposium on Ballistics, Quebec 1993, 91-100.
  • [31] A. Lichtenberger, Ductile behavior of some materials in the shaped charge jet, in: Metallurgical and Materials Applications of Shock-Wave and High-Strain-Rate Phenomena, (L. E. Murr, K. P. Staudhammer, M. A. Meyers eds.), Elsevier Science B. V., Amsterdam-Lausanne-New York-Oxford-Shannon-Tokyo 1995.
  • [32] W. Schwartz, Modified SDM model for the calculation of shaped charge hole profiles, Propellants, Explosives, Pyrotechnics 19 (1994), 192-201.
  • [33] P. C. Chou, M. E. Grudza, The effects of liner anisotropy on warhead performance, 12th International Symposium on Ballistics, San Antonio, Texas 1990, 347-358.
  • [34] B. Bourne, Shaped charge liner anisotropy at quasi static and high strain rates, 12th International Symposium on Ballistics, San Antonio, Texas 1990, 429-445.
  • [35] M. Tokarski, Metaloznawstwo metali stopów nieżelaznych, Wydawnictwo Śląsk 1985.
  • [36] B. Bourne, P. N. Jones, R. H. Warren, Grain size and crystallographic texture effects on the performance of shaped charges, 14th International Symposium on Ballistics, Quebec 1993, 119--124.
  • [37] E. Włodarczyk, A. DębskI, O technologii wytwarzania materiałów na wkładki kumulacyjne z właściwościami quasi-izotropowymi, Biul. WAT XLVI, 4 (1997), 99-114.
  • [38] G. Andersson, B. Janzon, S. Karlsson, A. Watterstam, A study of grain size effects on the performance of cold pressed shaped charge liners, 15th International Symposium on Ballistics, Jerusalem 1995, 259-266.
  • [39] K. Wlener, L. Shaw, S. Muelder, D. Breithaupt, D. Baum, Dynamic behaviour of shear formed shaped charge liner, Propellants, Explosives, Pyrotechnics, 18 (1993), 345-351.
  • [40] P. C. Chou, S. B. Segletes, Jet rotation resulting from anisotropy of shaped-charge liners, 11th International Symposium on Ballistics, Brussels, Belgium 1989.
  • [41] M. Held, Spinning jets from shaped charges with flow turned liners, 12th International Symposium on Ballistics, San Antonio, Texas 1990, 1-7.
  • [42] R. E. Brown, M. E. Majerus, Evidence of shear-induced instability in tungsten jets, 17th International Symposium on Ballistics, Midland, South Africa 1998.
  • [43] D. H. Lassila,-Material characteristics related to the fracture and participation of electrodeposited-copper shaped charge jets, Shock-wave and High-Strain-Rate Phenomena in Materials, (M. A. Meyers, L. E. Murr, K. P. Standhammer eds.), Marcel Dekker New York-Basel-Hong Kong 1992.
  • [44] D. H. Lassila, Correlations between shaped charge jet break up and grain boundary impurity concentrations, 13th International Symposium on Ballistics, Stockholm, Sweden 1992.
  • [45] D. H. Lassila, E. L. Baker, D. K. Chan, W. E. King, A. J. Schwartz, Effect of sulfur on the ductility of copper shaped-charge jets, 16th International Symposium on Ballistics, San Francisco 1996, 31-37.
  • [46] A. J. Schwartz, D. H. Lasslla, E. L. Baker, Analysis of intergranular impurity concentration and the effects on the ductility of copper shaped charge jets, 17th International Symposium on Ballistics, Midland, South Africa 1998.
  • [47] P. Kwapisiński, T. Knych, Wpływ zanieczyszczeń składu chemicznego na temperaturę rekrystalizacji miedzi(analiza literaturowa), Rudy Metale nieżelazne, 1 (1998), 16-21.
  • [48] G. Palumbo, S. J. Thorpe, K. T. Aust, On the contribution of triple junctions to the structure and properties of nanocrystalline materials, Scripta Metallurgica et Materialia, 24 (1990), 1347-1350.
  • [49] Ning Wang, G. Palumbo, Zhirui Wang, U. Erb, K. T. Aust, On the persistence of four-fold triple line nodes in nanostructured materials, Scripta Metallurgica et Materialia, 28 (1993), 253-256.
  • [50] B. O. Reinders, K. Weimann, Influence of grain size on the deformation behaviour of Armco iron, 12th International Symposium on Ballistics, San Antonio, Texas 1990, 390-399.
  • [51] A. Lichtenberger, The influence of grain size and quality of nickel-based liners on the ductility of shaped charge jets, 13th International Symposium on Ballistics, Stockholm, Sweden 1992.
  • [52] K. G. Cowan, P. R. Greenwood, R. Cornish, B. Bourne, Hydrocode and analytical code modelling of the effect of liner material grain size on shaped charge jet break-up parameters 17th International Symposium on Ballistics, Midland, South Africa 1998, 217-224.
  • [53] M. Blicharski, Wstęp do inżynierii materiałowej, WNT, Warszawa 1998, 114.
  • [54] L. E. Murr, M. A. Meyers, Metallurgical effects on shock and pressure waves in metals, w: Explosive welding, forming and compaction (T. Z. Blazynski ed.), Applied Science Publishers, London, New York 1983, 83-118.
  • [55] C. Feng, Transformation and structural changes in metal under shock and dynamic loading, Shock-wave and High-Strain-Rate Phenomena in Materials, (M. A. Meyers, L. E. Murr, K. P. Standhammer eds.), Marcel Dekker New York-Basel-Hong Kong 1992, 573-586.
  • [56] J. Krejci, J. Brezina, J. Buchar, Dislocation substructure in shaped charge slugs and jets, 15th International Symposium on Ballistics, Jerusalem 1995, 183-189.
  • [57] J. A. Hines, K. S. Vecchio, Dynamic recrystallization in adiabatic shear bando in shock-loaded copper, in: Metallurgical and Materials Applications of Shock-Wave and High-Strain-Rate Phenomena, (L. E. Murr, K. P. Staudhammer, M. A. Meyers eds.), Elsevier Science B. V., Amsterdam-Lausanne-New York-Oxford-Shannon-Tokyo 1995, 421-428.
  • [58] T. Sakai, Dynamic recrystallization microstructures under hot working conditions, Journal of Materials Processing Technology, 53 (1995), 349-361.
  • [59] L. Zernow, E. Chapyak, Analysis of strains, strain rates and temperatures during the early stages of shaped charge liner collapse, Propellants, Explosives, Pyrotechnics 19 (1994), 90-102.
  • [60] E. Racah, Shaped charge jet heating, Propellants, Explosives, Pyrotechnics, 13 (1988), 178-182.
  • [61] S. Karlson, S. Savage, A. Watterstam, B. Janzon, Metallurgical investigation of hot isostatically pressed copper, 16th International Symposium on Ballistics, San Francisco 1996, 607-611.
  • [62] Г. Н. Эiпптейн, Строение металлов, деформuрованых взрывом, Металлургия , Москва 1988.
  • [63] E. Włodarczyk, A. Jackowski, J. Janiszewski, Porównanie wybranych charakterystyk strumieni kumulacyjnych formowanych z wkładek spiekanych, Biul. WAT, XLVI, 4 (1997), 115-125.
  • [64] E. Włodarczyk, A. Jackowski, S. Cudziło, J. Janiszewski, Eksperymentalne badania układów kumulacyjnych z wkładkami ze spieków, Materiały konferencyjne, Konferencja nt. Badania i Rozwój Nowych Materiałów Konstrukcyjnych oraz Podstaw Technologii Wyrobów Uzbrojenia Wojskowego, Kołobrzeg 1997.
  • [65] R. Trębiński, A. Jackowski, Influence of shock wave heating during porous liners launching on the behaviour of jets, 17th International Symposium on Ballistics, Midland, South Africa 1998.
  • [66] P. Y. Chauteret, A. Lichtenberger, Bimetallic liners and coherence of shaped charge jets, 15th International Symposium on Ballistics, Jerusalem 1995, 439-449.
  • [67] K. Weimann, Research and development in the area of explosively formed projectiles charge technology, Propellants, Explosives, Pyrotechnics, 18 (1993), 294-298.
  • [68] B. O. Reinders, K. Weimann, Influence of grain size on the deformation behaviour of Armco iron, 12th International Symposium on Ballistics, San Antonio, Texas 1990, 390-399.
  • [69] P. Y. Chanteret, A. Kerdraon, Studies of tungsten shaped charge jets, 16th International Symposium on Ballistics, San Francisco 1996, 287-292.
  • [70] K. A. Winer, R. D. Breithaupt, S. A. Muelder, D. W. Baum, High-resolution observations of tungsten liner collapse and early jet formation, 16th International Symposium on Ballistics, San Francisco 1996, 607-611.
  • [71] E. L. Baker, G. P. Voorhis, T. Vuong, J. Orosi, Development of tungsten shaped charge liners producing high ductility jets, 16th International Symposium on Ballistics, San Francisco 1996, 277-285.
  • [72] M. A. Meyers, V. F. Nesterenko, Y. J. Chen, J. C. Lasalvia, M. P. Bondar, Y. L. Lukyanov, High-strain, high-strain-rate deformation of tantalum: the thick-walled cylinder method, in: Metallurgical and Materials Applications of Shock-Wave and High-Strain-Rate Phenomena, (L. E. Murr, K. P. Staudhammer, M. A. Meyers eds.), Elsevier Science B. V., Amsterdam-Lausanne-New York-Oxford-Shannon-Tokyo 1995, 487-494.
  • [73] K. Weimann, Performance of tantalum, copper, and iron EFPs against steel targets, 15th International Symposium on Ballistics, Jerusalem 1995, 399-404.
  • [74] W. F. Morrison, A. W. Horst, I. W. May, L. D. Johnson, Recent advances in antiarmor technology, 17th International Symposium on Ballistics, Midland, South Africa 1998.
  • [75] L. Zernow, E. J. Chapyak, Direct experimental evidence of melting on shear band in molybdenum shaped charge slug, in: Metallurgical and Materials Applications of Shock-Wave and High-Strain-Rate Phenomena, (L. E. Murr, K. P. Standhammer, M. A. Meyers eds.), Elsevier Science B. V., Amsterdam-Lausanne-New York-Oxford-Shannon-Tokyo 1995, 479-486.
  • [76] A. Lichtenberger, N. Verstraete, D. Salignon, T. Daumas, J. Collard, Shaped charges with molybdenum liner, 16th International Symposium on Ballistics, San Francisco 1996, 49-57.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA2-0005-0189
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.