Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The strategy of predictive maintenance monitoring is important for successful system damage detection. Maintenance monitoring utilizes dynamic response information to identify the possibility of damage. The basic factors of faults detection analysis are related to properties of the structure under inspection, collect the signals and appropriate signals processing. In vibration control, structures response sensing is limited by the number of sensors or the number of input channels of the data acquisition system. An essential problem in predictive maintenance monitoring is the optimal sensor placement. The paper addresses that problem by using mixed integer linear programming tasks solving. The proposed optimal sensors location approach is based on the difference between sensor information if sensor is present and information calculated by linear interpolation if sensor is not present. The tasks results define the optimal sensors locations for a given number of sensors. The results of chosen sensors locations give as close as possible repeating the curve of structure dynamic response function. The proposed approach is implemented in an algorithm for predictive maintenance and the numerical results indicate that together with intelligent signal processing it could be suitable for practical application.
Rocznik
Tom
Strony
153--158
Opis fizyczny
Bibliogr. 15 poz., wykr.
Twórcy
autor
autor
autor
- Department of Information Processes and Systems, Institute of Information and Communication Technologies - BAS, Sofia, Acad. G. Bonchev St., block 2, 1113 Bulgaria, dborissova@iit.bas.bg
Bibliografia
- [1] H. M. Hashemian, “Aging management through on-line condition monitoring,” in Proc. PLIM + PLEX 2006 Conference, Paris, France, April 10-11 2006.
- [2] Z. Hameed, Y. S. Hong, Y. M. Cho, S. H. Ahn, and C. K. Song, “Condition monitoring and fault detection of wind turbines and related algorithms - a review,” Renewable and Sustainable Energy Review, vol. 13, pp. 1-39, 2009.
- [3] E. B. Flynn and M. D. Todd, “A bayesian approach to optimal sensor placement for structural health monitoring with application to active sensing,” Renewable and Sustainable Energy Review, vol. 24, pp. 891-903, 2010.
- [4] S. Doebling, C. Farrar, M. B. Prime, and D. Shevitz, “Damage identification and health monitoring of structural and mechanical systems from changes in their vibrational characteristics: a literature review,” Alamos National Laboratory, vol. LA-13070-MS, 1996.
- [5] R. F. Guratzsch and S. Mahadevan, “Sensor placement design for shm under uncertainty,” in Third European Workshop on Structural Health Monitoring, Granada, Spain, July 5-7 2006.
- [6] K. Worden and A. P. Burrows, “Burrows, optimal sensor placement for fault detection,” Engineering Structures, vol. 23, pp. 885-901, 2001.
- [7] W. Liu, W. Gao, Y. Sun, and M. Xu, “Optimal sensor placement for spatial lattice structure based on genetic algorithms, journal of sound and vibration,” Engineering Structures, vol. 317, pp. 175-189, 2008.
- [8] T.-H. Yi, H.-N. Li, and M. Gu, “Optimal sensor placement for structural health monitoring based on multiple optimization strategies,” The Structural Design of Tall and Special Buildings, vol. 20, pp. 881-900, 2011.
- [9] T.-H. Yi, H.-N. Li, and M. Gu, “Optimal sensor placement for health monitoring of high-rise structure based on genetic algorithm detection,” Mathematical Problems in Engineering, vol. 2011, pp. 12 pages, doi:10.1155/2011/395 101, 2011.
- [10] W. J. Staszewski and K. Worden, “An overview of optimal sensor location methods for damage detection,” in Proc. Smart Structures and Materials, April 10-11 2001, pp. 179-187.
- [11] W. J. Staszewski, “Intelligent signal processing for damage detection in composite materials,” Composites Science and Technology, vol. 62, pp. 941-950, 2002.
- [12] A. K. Jardine, D. Lin, and D. Banjevic, “A review on machinery diagnostics and prognostics implementing condition-based maintenance,” Mechanical Systems and Signal Processing, vol. 20, pp. 1483-1510, 2006.
- [13] Z. N. Li, J. Tang, and Q. S. Li, “Optimal sensor locations for structural vibration measurements,” Mechanical Systems and Signal Processing, vol. 65, pp. 807-818, 2004.
- [14] Lindo systems inc. [Online]. Available: http://www.lindo.com/
- [15] I. Connection Technology Center. Industrial vibration analysis for predictive maintenance and improved machine reliability. Internet draft. [Online]. Available: http://www.ctconline.com/pdf/pubTechPapers/21-Industrial
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0053-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.