PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

History of infrared detectors

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper overviews the history of infrared detector materials starting with Herschel's experiment with thermometer on February 11th, 1800. Infrared detectors are in general used to detect, image, and measure patterns of the thermal heat radiation which all objects emit. At the beginning, their development was connected with thermal detectors, such as thermocouples and bolometers, which are still used today and which are generally sensitive to all infrared wavelengths and operate at room temperature. The second kind of detectors, called the photon detectors, was mainly developed during the 20th Century to improve sensitivity and response time. These detectors have been extensively developed since the 1940's. Lead sulphide (PbS) was the first practical IR detector with sensitivity to infrared wavelengths up to ~3 µm. After World War II infrared detector technology development was and continues to be primarily driven by military applications. Discovery of variable band gap HgCdTe ternary alloy by Lawson and co-workers in 1959 opened a new area in IR detector technology and has provided an unprecedented degree of freedom in infrared detector design. Many of these advances were transferred to IR astronomy from Departments of Defence research. Later on civilian applications of infrared technology are frequently called "dual-use technology applications." One should point out the growing utilisation of IR technologies in the civilian sphere based on the use of new materials and technologies, as well as the noticeable price decrease in these high cost technologies. In the last four decades different types of detectors are combined with electronic readouts to make detector focal plane arrays (FPAs). Development in FPA technology has revolutionized infrared imaging. Progress in integrated circuit design and fabrication techniques has resulted in continued rapid growth in the size and performance of these solid state arrays.
Twórcy
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908, Warsaw, Poland, rogan@wat.edu.pl
Bibliografia
  • 1. W. Herschel, ”Experiments on the refrangibility of the invisible rays of the Sun,” Phil. Trans. Roy. Soc. London 90, 284-292 (1800).
  • 2. http://coolcosmos.ipac.caltech.edu/sitemap.html#cosmicclassroom
  • 3. E. S. Barr, “Historical survey of the early development of the infrared spectral region,” Amer. J. Phys. 28, 42-54 (1960).
  • 4. E. S. Barr, “The infrared pioneers - I. Sir William Herschel,” Infrared Phys. 1, 1 (1961).
  • 5. R. A. Smith, F.E. Jones, and R. P. Chasmar, The Detection and Measurement of Infrared Radiation, Clarendon, Oxford, 1958.
  • 6. P. W. Kruse, L. D. McGlauchlin and R. B. McQuistan, Elements of Infrared Technology, Wiley, New York, 1962.
  • 7. R. D. Hudson, Infrared System Engineering, Wiley-Interscience, New Jersey, 1969.
  • 8. E. S. Barr, “The infrared pioneers - II. Macedonio Melloni,” Infrared Phys. 2, 67-73 (1962).
  • 9. E. S. Barr, “The Infrared Pioneers - III. Samuel Pierpont Langley,” Infrared Phys. 3, 195-206 (1963).
  • 10. L. M. Biberman and R. L. Sendall, “Chapter 1. Introduction: A brief history of imaging devices for night vision,” in Electro-Optical Imaging: System Performance and Modeling, edited by L. M. Biberman, pp. 1-1-1-26, SPIE Press, Bellingham, 2000.
  • 11. J. Caniou, Passive Infrared Detection: Theory and Application, Kluwer Academic Publishers, Dordrecht, 1999
  • 12. K. Herrmann and L. Walther, Wissensspeicher Infrarottechnik (Store of Knowledge in Infrared Technology), Fachbuchverlag, Leipzig, 1990.
  • 13. T. J. Seebeck, ”Magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz,” Abh. Deutsch. Akad. Wiss. Berlin, 265-373 (1822).
  • 14. http://catalogue.museogalileo.it/section/ElectricityMagnetism.html.
  • 15. http://earthobservatory.nasa.gov/Features/Langley/langley_2.php.
  • 16. S. P. Langley, “The bolometer and radiant energy,” Proc. Am. Academy of Arts and Sciences 16, 342-358 (May 1880 - Jun. 1881).
  • 17. C. D. Walcott, Samuel Pierpont Langley, City of Washington, The National Academy of Science, April, 1912.
  • 18. W. Smith, “Effect of light on selenium during the passage of an electric current,” Nature 7, 303 (1873).
  • 19. M. F. Doty, Selenium, List of References, 1917-1925, New York Public Library, New York, 1927.
  • 20. Applied Optics (November, 1963), commemorative issue with extensive material on Coblentz's scientific work
  • 21. W. F. Meggers, William Weber Coblentz.1873-196, National Academy of Science, Washingthon, 1967.
  • 22. H. Hertz, “Ueber den Einfluss des ultravioletten Lichtes auf die electrische Entladung,” Annalen der Physik 267(8) 983-1000 (1887).
  • 23. J. Elster, H. Geitel, ”Ueber die Entladung negativ electrischer Körper durch das Sonnen- und Tageslicht,” Ann. Physik 497-514 (1889).
  • 24. F. Braun, “Uber die Stromleitung durch Schwefelmetalic,” Annalen der Physik and Chemie 153(4), 556-563 (1874).
  • 25. J. C. Bose, “Detector for electrical disturbances,” U. S. Patent 755,840 (Filed September 30, 1901. Issued March 29, 1904).
  • 26. T. W. Case, “Notes on the change of resistance of certain substrates in light,” Phys. Rev. 9, 305-310 (1917).
  • 27. S. F. Johnson, A History of Light and Colour Measurement. Science in the Shadows, IOP Publishing Ltd, Bristol, 2001.
  • 28. T. W. Case, “The thalofide cell a new photoelectric substance,” Phys. Rev. 15, 289 (1920).
  • 29. G. Holst, J. H. de Boer, M. C. Teves, and C. F. Veenemans, “Foto-electrische cel en inrichting waarmede uit een primair, door directe lichtstralen gevormd beeld een geheel ofnagenoeg geheel conform secundair optisch beeld kan,” Dutch Patent 27062 (1928), British Patent 326200; D.R.P. 535208; “An apparatus for the transformation of light of long wave length into light of short wavelength,” Physica 1, 297-305 (1934).
  • 30. L. Koller, “Photoelectric emission from thin films of caesium,” Phys. Rev. 36, 1639-1647 (1930); N. R. Campbell, ”Photoelectric emission of thin films,” Phil. Mag. 12, 173-185 (1931).
  • 31. A. M. Glover, “A review of the development of sensitive phototubes,” Proc. IRE, 413-423, August 1941.
  • 32. S. Asao and M. Suzuki, “Improvement of thin film caesium photoelectric tube,” Proc. Phys. Math. Soc. (Japan, series 3), 12, 247-250. October 1930.
  • 33. V. P. Ponomarenko and A. M. Filachev, Infrared Techniques and Electro-Optics in Russia: A History 1946-2006, SPIE Press, Bellingham, 2007.
  • 34. E. W. Kutzscher, “Review on detectors of infrared radiation,” Electro-Opt. Syst. Design 5, 30 (June 1973).
  • 35. W. N. Arnquist, “Survey of early infrared developments,” Proc. IRE 47 1420-1430 (1959).
  • 36. R. J. Cushman, “Film-type infrared photoconductors,” Proc. IRE 47, 1471-1475 (1959).
  • 37. D. J. Lovell, “Cashman thallous sulfide cell,” Appl. Opt. 10, 1003-1008 (1971).
  • 38. D. J. Lovell, “The development of lead salt detectors,” Amer. J. Phys. 37, 467-478 (1969).
  • 39. M. Judt and B. Ciesla, Technology Transfer out of Germany after 1945, Routledge Studies in the History of Science, Technology and Medicine, Overseas Publishers Association, Amsterdam, 1996.
  • 40. P. R. Norton, “Infrared detectors in the next millennium,” Proc. SPIE 3698, 652-665 (1999)
  • 41. A. Rogalski, Infrared Detectors, 2nd edition, CRC Press, Boca Raton, 2010.
  • 42. R. C. Jones, “Phenomenological description of the response and detecting ability of radiation detectors,” Proc. IRE 47, 1495-1502 (1959).
  • 43. P. W. Kruse, Uncooled Thermal Imaging, SPIE Press, Bellingham, 2001.
  • 44. P. Norton, “Third-generation sensors for night vision,” Opto-Electron. Rev. 14, 1-10 (2006).
  • 45. http://www.nvl.army.mil/history.html
  • 46. “Sidewinder article”, http://wiki.scramble.nl/index.php?title=Sidewinder_article
  • 47. http://ookaboo.com/o/pictures/picture/21952750/Prototype_Sidewinder1_missile_on_an_AD4_
  • 48. B. V. Rollin and E. L. Simmons, “Long wavelength infrared photoconductivity of silicon at low temperatures,” Proc. Phys. Soc. B65, 995-996 (1952).
  • 49. E. Burstein, J. J. Oberly, and J. W. Davisson, “Infrared photoconductivity due to neutral impurities in silicon,” Phys. Rev. 89(1), 331-332 (1953).
  • 50. E. Burstein, G. Pines and N. Sclar, “Optical and photoconductive properties of silicon and germanium,” in Photoconductivity Conference at Atlantic City, edited by R. Breckenbridge, B. Russell and E. Hahn, pp. 353-413, Wiley, New York, 1956.
  • 51. S. Borrello and H. Levinstein, ”Preparation and properties of mercury moped germanium,” J. Appl. Phys. 33, 2947-2950 (1962).
  • 52. R. A. Soref, “Extrinsic IR potoconductivity of Si dped with B, Al, Ga, P, As or Sb,” J. Appl. Phys. 38, 5201-5209 (1967).
  • 53. W. S. Boyle and G. E. Smith, “Charge-coupled semiconductor devices,” Bell Syst. Tech. J. 49, 587-593 (1970).
  • 54. F. Shepherd and A. Yang, “Silicon Schottky retinas for infrared imaging,” IEDM Tech. Dig., 310–313 (1973).
  • 55. W. D. Lawson, S. Nielson, E. H. Putley, and A.S. Young, “Preparation and properties of HgTe and mixed crystals of HgTe-CdTe,” J. Phys. Chem. Solids 9, 325-329 (1959).
  • 56. T. Elliot, “Recollections of MCT work in the UK at Malvern and Southampton,” Proc. SPIE 7298, 72982M (2009).
  • 57. P. W. Kruse, M. D. Blue, J. H. Garfunkel, and W.D. Saur, “Long wavelength photoeffects in mercury selenide, mercury telluride and mercury telluride-cadmium telluride,” Infrared Phys. 2, 53-60, 1962.
  • 58. J. Melngailis and T. C. Harman, “Single-crystal lead-tin chalcogenides,” in Semiconductors and Semimetals, Vol 5, pp. 111-174, edited by R. K. Willardson and A. C. Beer, Academic Press, New York, 1970.
  • 59. T. C. Harman and J. Melngailis, “Narrow gap semiconductors,” in Applied Solid State Science, Vol. 4, pp. 1-94, edited by R. Wolfe, Academic Press, New York, 1974.
  • 60. R. Dornhaus, G. Nimtz, and B. Schlicht, Narrow Gap Semiconductors, Springer, Berlin, 1983.
  • 61. J. Baars, “New aspects of the material and device technology of intrinsic infrared photodetectors,” in Physics and Narrow Gap Semiconductors, pp. 280-282, edited by E. Gornik, H. Heinrich and L. Palmetshofer, Springer, Berlin (1982).
  • 62. J. T. Longo, D. T. Cheung, A. M. Andrews, C. C. Wang, and J. M. Tracy, “Infrared focal planes in intrinsic semiconductors,” IEEE Trans. Electr. Dev. ED-25, 213-232 (1978).
  • 63. D. Long and J. L. Schmit, “Mercury-cadmium telluride and closely related alloys,” in Semiconductors and Semimetals, Vol. 5, pp. 175-255, edited by R. K. Willardson and A. C. Beer, Academic Press, New York (1970).
  • 64. P. Norton, “HgCdTe infrared detectors,” Opto-Electron. Rev. 10, 159-174 (2002).
  • 65. C. Verie and R. Granger, “Propriétés de junctions p-n d’alliages CdxHg1-xTe,” C. T. Acad. Sc. 261, 3349-3352 (1965).
  • 66. G. C. Verie and M. Sirieix, “Gigahertz cutoff frequency capabilities of CdHgTe photovoltaic detectors at 10.6 um,” IEEE J. Quant. Electr. 8, 180-184 (1972).
  • 67. B. E. Bartlett, D. E. Charlton, W. E. Dunn, P. C. Ellen, M. D. Jenner, and M. H. Jervis, “Background limited photoconductive detectors for use in the 8-14 micron atmospheric window,” Infrared Phys. 9, 35-36 (1969).
  • 68. M. A. Kinch, S. R. Borrello, and A. Simmons, “0.1 eV HgCdTe photoconductive detector performance,” Infrared Phys. 17, 127-135 (1977).
  • 69. M. A. Kinch, “Fifty years of HgCdTe at Texas Instruments and beyond,” Proc. SPIE 7298, 72982T (2009).
  • 70. C. T. Elliott, D. Day, and B. J. Wilson, “An integrating detector for serial scan thermal imaging,” Infrared Physics 22, 31-42 (1982).
  • 71. A. Blackburn, M. V. Blackman, D. E. Charlton, W. A. E. Dunn, M. D. Jenner, K. J. Oliver, and J. T. M. Wotherspoon, ”The practical realization and performance of SPRITE detectors,” Infrared Phys. 22, 57-64 (1982).
  • 72. D. L. Smith and C. Mailhiot, “Proposal for strained type II superlattice infrared detectors,” J. Appl. Phys. 62, 2545-2548 (1987).
  • 73. B. F. Levine, “Quantum-well infrared photodetectors,” J. Appl. Phys. 74, R1-R81 (1993).
  • 74. A. Rogalski, “Quantum well photoconductors in infrared detectors technology,” J. Appl. Phys. 93, 4355-4391 (2003).
  • 75. H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors, Springer, Berlin, 2007.
  • 76. M. Zandian, J. D. Garnett, R. E. DeWames, M. Carmody, J. G. Pasko, M. Farris, C. A. Cabelli, D.E. Cooper, G. Hildebrandt, J. Chow, J. M. Arias, K. Vural, and D. N. B. Hall, “Mid?wavelength infrared p-on-on Hg1-xCdxTe heterostructure detectors: 30-120 Kelvin state-of-the-art performance,” J. Electron. Mater. 32, 803-809 (2003).
  • 77. A. Rogalski and R. Ciupa, “Performance limitation of short wavelength infrared InGaAs and HgCdTe photodiodes,” J. Electron. Mater. 28, 630-636 (1999).
  • 78. M. Z. Tidrow, W. A. Beck, W. W. Clark, H. K. Pollehn, J. W. Little, N. K. Dhar, P. R. Leavitt, S. W. Kennerly, D. W. Beekman, A. C. Goldberg, and W. R. Dyer, “Device physics and focal plane applications of QWIP and MCT,” Opto-Electron. Rev. 7, 283-296 (1999).
  • 79. Y. Wei and M. Razeghi, “Modeling of type-II InAs/GaSb superlattices using an empirical tight-binding method and interface engineering,” Phys. Rev. B69, 085316 (2004).
  • 80. A. Rogalski, “Hg-based alternatives to MCT,” in Infrared Detectors and Emitters: Materials and Devices, pp. 377-400, edited by P. Capper and C. T. Elliott, Kluwer Academic Publishers, Boston, 2001.
  • 81. M. J. E. Golay, “A pneumatic infrared detector,” Rev. Sci. Instr. 18, 357-362 (1947).
  • 82. E. M. Wormser, “Properties of thermistor infrared detectors,” J. Opt. Soc. Amer. 43, 15-21 (1953).
  • 83. R. W. Astheimer, “Thermistor infrared detectors,” Proc. SPIE 443, 95–109 (1983).
  • 84. G.W. McDaniel and D. Z. Robinson, “Thermal imaging by means of the evaporograph,” Appl. Opt. 1, 311-324 (1962).
  • 85. C. Hilsum and W. R. Harding, “The theory of thermal imaging, and its application to the absorption-edge image tube,” Infrared Phys. 1, 67-93 (1961).
  • 86. A. J. Goss, “The pyroelectric vidicon - A review,” Proc. SPIE 807, 25-32 (1987).
  • 87. R. A. Wood and N. A. Foss, “Micromachined bolometer arrays achieve low-cost imaging,” Laser Focus World, 101-106 (June, 1993).
  • 88. http://www.flir.com/uploadedFiles/Eurasia/Cores_and_Components/Technical_Notes/uncooled%20detectors%20 BST.pdf
  • 89. T. Schimert, C. Hanson , J. Brady, T. Fagan, M. Taylor, W. McCardel, R. Gooch, M. Gohlke, and A.J. Syllaios, “Advances in small pixel, large format - Si bolometer arrays,” Proc. SPIE 7298, 72980T-1-5 (2009).
  • 90. J. J. Yon, J. P. Nieto, L. Vandroux, P. Imperinetti, E. Rolland, V. Goudon, C. Vialle, and A. Arnaud, ”Low resistance - SiGe based microbolometer pixel for future smart IR FPA,” Proc. SPIE 7660, 76600U-1-7 (2010).
  • 91. C. Hanson, “IR detectors: amorphous-silicon bolometers could surpass IR focal-plane technologies,” Laser Focus Word, April 1, 2011.
  • 92. N. Roxhed, F. Niklaus, A.C. Fischer, F. Forsberg, L. Höglund, P. Ericsson, B. Samel, S. Wissmar, A. Elfvingc, T.I. Simonsen, K. Wang, and N. Hoivik, “Low-cost uncooled microbolometers for thermal imaging,” Proc. SPIE 7726, 772611-1-10 (2010).
  • 93. Seeing Photons: Progress and Limits of Visible and Infared Sensor Arrays, Committee on Developments in Detector Technologies; National Research Council, 2010, http://www.nap.edu/catalog/12896.html
  • 94. P. Norton, “Detector focal plane array technology”, in Encyclopedia of Optical Engineering, edited by R. Driggers, pp. 320-348, Marcel Dekker Inc., New York, 2003.
  • 95. R. Thom, “High density infrared detector arrays,” U.S. Patent No. 4,039,833 (1977).
  • 96. A. S. Gilmore, “High-definition infrared FPAs,” Raytheon Technology Today, issue 1 (2008).
  • 97. G. Destefanis, P. Tribolet, M. Vuillermet, and D.B. Lanfrey, “MCT IR detectors in France,” Proc. SPIE 8012, 801235-1-12 (2011)
  • 98. A. Hoffman, “Semiconductor processing technology improves resolution of infrared arrays,” Laser Focus World, 81-84, February 2006.
  • 99. J. W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E. C. Piquette, T. Sprafke, W. E. Tennant, M. Zandian, and J. Zino, “Teledyne Imaging Sensors: Infrared imaging technologies for astronomy & civil space,” Proc. SPIE 7021, 70210H (2008).
  • 100. A. M. Fowler, D. Bass, J. Heynssens, I. Gatley, F.J. Vrba, H. D. Ables, A. Hoffman, M. Smith, and J. Woolaway, “Next generation in InSb arrays: ALADDIN, the 10241024 InSb focal plane array readout evaluation results,” Proc. SPIE 2268, 340-345 (1994).
  • 101. E. Beuville, D. Acton, E. Corrales, J. Drab, A. Levy, M. Merrill, R. Peralta, and W. Ritchie, “High performance large infrared and visible astronomy arrays for low background applications: Instruments performance data and future developments at Raytheon,” Proc. SPIE 6660, 66600B (2007).
  • 102. A. W. Hoffman, E. Corrales, P. J. Love, and J. Rosbeck, M. Merrill, A. Fowler, and C. McMurtry, “2K x 2K InSb for astronomy,” Proc. SPIE 5499, 59-67 (2004).
  • 103. M. E. Ressler, H. Cho, R. A. M. Lee, K. G. Sukhatme, J. J. Drab, G. Domingo, M. E. McKelvey, R. E. McMurray, Jr., and J. L. Dotson, “Performance of the JWST/MIRI Si:As detectors,” Proc. SPIE 7021, 70210O (2008).
  • 104. A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105, 091101 (2009).
  • 105. D. F. King, J. S. Graham, A. M. Kennedy, R. N. Mullins, J. C. McQuitty, W. A. Radford, T. J. Kostrzewa, E. A. Patten, T. F. Mc Ewan, J. G. Vodicka, and J. J. Wootana, “3rd-generation MW/LWIR sensor engine for advanced tactical systems,” Proc. 6940, 69402R (2008).
  • 106. S. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “Demonstration of megapixel dual-band QWIP focal plane array,” IEEE J. Quantum. Electron. 46, 285-293 (2010).
  • 107. S. D. Gunapala, S. V. Bandara, J. K. Liu, E. M. Luong, S. B. Rafol, J. M. Mumolo, D. Z. Ting, J. J. Bock, M. E. Ressler, M. W. Werner, P. D. LeVan, R. Chehayeb, C. A. Kukkonen, M. Ley, P. LeVan, and M. A. Fauci, “Recent developments and applications of quantum well infrared photodetector focal plane arrays,” Opto-Electron. Rev. 8, 150-163 (2001).
  • 108. A. Rogalski, “New material systems for third generation infrared photodetectors,” Opto-Electron. Rev. 16, 458-482 (2008).
  • 109. R. Rehm, M. Walther, J. Schmitz, F. Rutz, A. Wörl, R. Scheibner, and J. Ziegler, “Type-II superlattices: the Fraunhofer perspective,” Proc. SPIE 7660, 76601G-1-12 (2010).
  • 110. “Uncooled infrared imaging market commercial & military applications,” Market & Technology Report - available in JULY 2011, Yole Development.
  • 111. http://www.sofradir-ec.com/wp-uncooled-detectors-achieve.asp
  • 112. S. H. Black, T. Sessler, E. Gordon, R. Kraft, T Kocian, M. Lamb, R. Williams, and T. Yang, “Uncooled detector development at Raytheon,” Proc. SPIE 8012, 80121A-1-12 (2011).
  • 113. P. Martyniuk and A. Rogalski, “Quantum-dot infrared photodetectors: Status and outlook,” Prog. Quantum Electron. 32, 89-120 (2008).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0053-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.