PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Superprism effect in all-glass volumetric photonic crystals

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper focuses on the superprism effect which can be obtained in low-contrast photonic crystals. The modelling is related to the newly developed method for all-dielectric photonic crystals. This places material constraints on the simulated crystals which limit the refractive index difference to 0.1 for all-glass photonic crystals and 0.6 for air-glass structures and forces us to focus on hexagonal lattices. The simulations show the existence of superprism effect in both types of structure for realistic glasses. In both cases various linear filling factors are studied in order to maximize the frequency range of the superprism effect. For the air-F2 glass structure it reaches 0.108 normalized frequencies and for the air-NC21 glass structure it reaches 0.99 normalized frequencies for TM polarization. For the double glass structures, the largest range is for the F2/NC21 photonic crystal and spans 0.012 normalized frequencies. In the F2/NC21 crystal the frequency range reaches 0.005 for TE polarization.
Twórcy
autor
autor
autor
autor
  • Institute of Electronic Materials Technology, 133 Wólczyńska Str., 01–919 Warsaw, Poland
Bibliografia
  • 1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals - Molding the Flow of Light, Princeton University Press, Princeton, 1995.
  • 2. J.-M. Lourtioz, H. Benisty, V. Berger, and J.-M. Gerard, Photonic Crystals: Towards Nanoscale Photonic Devices, Springer, Boston, 2008.
  • 3. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics”, Phys. Rev. Lett. 58, 2059-2062 (1987).
  • 4. S. John, “Strong localization of photons in certain disordered dielectric superlattices”, Phys. Rev. Lett. 58, 2486-2489 (1987).
  • 5. M. Imada, L. H. Lee, M. Okano, S. Kawashima, and S. Noda, “Development of three-dimensional photonic-crystal wave-guides at optical-communication wavelengths”, Appl. Phys. Lett. 88, 171107 (2006).
  • 6. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures”, Phys. Rev. Lett. 65, 3152-3155 (1990).
  • 7. P. St. J. Russell, “Interference of integrated Floquet-Bloch waves”, Phys. Rev. A33, 3232-3242 (1986).
  • 8. R. Zengerle, “Light propagation in singly and doubly periodic planar waveguides”, J. Mod. Opt. 34, 1589-1617 (1987).
  • 9. J. Dellinger, D. Bernier, B. Cluzel, X. Le Roux, A. Lupu, F. de Fornel, and E. Cassan, “Near-field observation of beam steering in a photonic crystal superprism”. Opt. Lett. 36, 1074-1076 (2011).
  • 10. R. Kotynski, T. Stefaniuk, and A. Pastuszczak, “Sub-wavelength diffraction-free imaging with low-loss metal-dielectric multilayers”, Appl. Phys. A-Mater. 103, 905-909 (2011).
  • 11. A. Khorshidahmad and A. G. Kirk, “Composite superprism photonic crystal demultiplexer: analysis and design”, Opt. Express 18, 20518-20528 (2010).
  • 12. N. C. Panoiu, M. Bahl, and R. M. Osgood, Jr., “Optically tunable superprism effect in nonlinear photonic crystals”, Opt. Lett. 28, 2503-2505 (2003).
  • 13. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals: toward microscale lightwave circuits", J. Lightwave Technol. 17, 2032-2038 (1999).
  • 14. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres, Kluwer Academic, Dordrecht, 2003.
  • 15. I. Kujawa, A. Filipkowski, D. Pysz, F. Hudelist, A. Waddie, R. Stepien, R. Buczynski, and M. R. Taghizadeh, “Photonic glass: novel method for fabrication of volume 2D photonic crystals”, Proc. of SPIE 7120, 71200M (2008).
  • 16. F. Hudelist, R. Buczynski, A. J. Waddie, and M. R. Taghizadeh, “Design and fabrication of nano-structured gradient index microlenses”, Opt. Express 17, 3255-3263 (2009).
  • 17. F. Hudelist, J. M. Nowosielski, R. Buczynski, A. J. Waddie, and M. R. Taghizadeh, “Nanostructured elliptical gradient-index microlenses”, Opt. Lett. 35, 130-132, (2010).
  • 18. M. Yamane and Y. Asahara, Glasses for Photonics, University Press, Cambridge, 2000.
  • 19. A. Sagan, S. Nowicki, R. Buczynski, M. Kowalczyk, and T. Szoplik, “Imaging phase objects with square-root, Foucault, and Hoffman real filters: a comparison”, Appl. Opt. 42, 5816-58 (2003).
  • 20. R. Buczynski, D. Pysz, R. Stepien, A. J. Waddie, I. Kujawa, R. Kasztelanic, M. Franczyk, and M. R. Taghizadeh, “Supercontinuum generation in photonic crystal fibers with nanoporous core made of soft glass”, Laser Phys. Lett. 8, 443-448 (2011).
  • 21. P. Yeh, “Electromagnetic propagtion in birefringent layered media”, JOSA 69, 742-756 (1979).
  • 22. N. Malkova, D. A. Scrymgeour, and V. Gopalan, “Numerical study of light-beam propagation and superprism effect inside two-dimensional photonic crystals”, Phys. Rev. B72, 045144 (2005).
  • 23. S. G. Johnson, MIT Photonic-bandgaps, http://ab-initio.mit.edu/mpb/doc/mpb.pdf.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0053-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.