PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recent advancement in metal containing multicomponent chalcogenide glasses

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Amorphous semiconductors or chalcogenide glasses are the key materials in modern optoelectronics to make comfortable life of our society. Understanding of physical properties (like microstructure, thermal, optical, electrical) of these materials is important for their different uses. Predominant study of physical properties of the metal containing multicomponent chalcogenide glasses have attracted much attention, due to their interesting variable features and wide range of structural network modifications. Structural modifications in these materials are usually described with respect to the values of structural units (or average coordination number). In significance to this, the present work demonstrates the chronological development in the field of chalcogenide glasses along with scanning electron microscopy (SEM) morphologies. Optical, electrical and thermal correlative properties of recent developed Se93-xZn2Te5Inx (0 ≤ x ≤ 10) metallic multicomponent chalcogenide glasses are discussed. Variation in SEM morphology, refractive index (n), extinction coefficient (K), optical energy band gap (Eg), electrical conductivity (δav), crystallization activation energy (Ec) and glass forming ability (GFA) with structural units of Se-Zn-Te-In glasses have been demonstrated in this study. Subjected materials thermal, optical and electrical parameters have been achieved higher and lower in a respective manner at the threshold structural unit value (r)
Twórcy
autor
Bibliografia
  • 1. K. Singh, A. K. Singh, and N. S. Saxena, “Temperature dependence of effective thermal conductivity and effective thermal diffusivity of Se90In10 bulk chalcogenide glass”, Curr. Appl. Phys. 8, 159-162 (2008).
  • 2. A. K. Singh, K. Singh, and N. S. Saxena, “Effect of annealing on structures and effective thermal conductivity of Se90 In10-chalcogenide glass”, J. Ovonic Research 4, 107-111 (2008).
  • 3. A. K. Singh and K. Singh, “Correlative study of optical, electrical and thermal transport properties of Se100-xInx chalcogenide glasses”, J. Optoelectronics Adv. M. 9, 3756-3759 (2007).
  • 4. A. Abu EL-Fadl, M. M. Hafiz, M. M. Wakaad, and A. S. Ashour, “Calorimetric studies of the crystallization process in Cu10Se90 and Cu20Se80 chalcogenide glasses”, Physica B398, 118-125 (2007).
  • 5. N. Mehta and A. Kumar, “Comparative analysis of calori metric studies in Se90M10(M = In, Te, Sb) chalcogenide glasses”, J. Therm. Anal. Calorim. 87, 345-350 (2007).
  • 6. A. K. Galwey, “A view and a review of the melting of alkali metal halide crystals Part 2. pattern of eutectic and solid solutions in binary common ion mixtures”, J. Therm. Anal. Calorim. 82, 423-437 (2005).
  • 7. A. K. Singh, N. Mehta, and K. Singh, “Correlation between Meyer-Neldel rule and phase separation in Se98-xZn2Inx chalcogenide glasses”, Curr. Appl. Phys. 9, 807-811 (2009).
  • 8. A. K. Singh, N. Mehta, and K. Singh, “Electrical properties of Se-Zn-In chalcogenide glasses”, Eur. Phys. J. Appl. Phys. 46, 20303-4 (2009).
  • 9. A. K. Singh and K. Singh, “Composition dependence of UV-visible and MID-FTIR properties of Se98-xZn2Inx (x = 0, 2, 4, 6 and 10) chalcogenide glasses”, J. Modern Optics 56, 471-476 (2009).
  • 10. A. K. Singh and K. Singh, “Crystallization kinetics and thermal stability of Se98-xZn2Inx chalcogenide glasses”, Philos. Mag. 89, 1457-1472 (2009).
  • 11. A. K. Singh, N. Mehta, and K. Singh, “Study of dielectric properties of Se-Zn -In chalcogenide glasses”, J. Optoelectron. Adv. M. 12, 1700-1705 (2010).
  • 12. S. Gu, Z. Ma, H. Tao, C. Lin, H. Hu, X. Zhaoa, and Y. Gong, “Second-harmonic generation in the thermal/electrical poling (100-x)GeS2·x(0.5Ga2S3·0.5CdS) chalcogenide glasses”, J. Phys. Chem. Solids 69, 97-100 (2008).
  • 13. A. K. Varshneya and D. J. Mauro, “Microhardness, indentation toughness, elasticity, plasticity, and brittleness of Ge-Sb-Se chalcogenide glasses”, J. Non-Cryst. Solids 353, 1291-1297 (2007).
  • 14. S. M. El-Sayed, “The study of dielectric relaxation and glass forming tendency in Cd-Se-Te glassy system”, Appl. Surf. Sci. 253, 7089-7093 (2007).
  • 15. A. K. Singh, P. Kumar, K. Singh, and N.S. Saxena, “Thermal transport in Se81Te15Sb4 chalcogenide glass”, Chalcogenide Lett. 4, 17-22 (2007).
  • 16. M. N. Kozicki and M. Mitkova, “Mass transport in chalcogenide electrolyte films - materials and applications”, J. Non-Cryst. Solids 352, 567-577 (2006).
  • 17. E. R. Shaaban, “Non-isothermal crystallization kinetic studies on a ternary, Sb0.14As0.38Se0.48chalcogenide semi-conducting glass”, Physica B373, 211-216 (2006).
  • 18. H. Fritzsche, “Why are chalcogenide glasses the materials of choice for Ovonic switching devices?”, J. Phys. Chem. Solids 68, 878-882 (2007).
  • 19. P. Pattanayak and S. Asokan, “Anomalous electrical switching behaviour in phase-separated bulk Ge-Se-Ag chalcogenide glasses”, Europhys. Lett. 75, 778-783 (2006).
  • 20. H. F. Hamann, M. O’boyle, Y. C. Martin, M. Rooks, and H. K. Wickramasinghe, “Ultra-high-density phase-change storage and memory”, Nat. Mater. 5, 383-87 (2006).
  • 21. V. Balitska, O. Shpotyuk, and H. Altenburg, “Bimolecular relaxation kinetics observed in radiation-optical properties of Ge-As(Sb)-S glasses”, J. Non-Cryst. Solids 352, 4809-4813 (2006).
  • 22. A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C.G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors”, J. Non-Cryst. Solids 352, 584-588 (2006).
  • 23. M. Bayindir, O. Shapira, D. S. Hinczewski, J.Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Integrated fibres for self-monitored optical transport”, Nat. Mater. 4, 820-825 (2005).
  • 24. S. A. Mcdonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levinal, and W. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics”, Nat. Mater. 4, 138-142 (2005).
  • 25. G. Boudebs, S. Cherukulappurath, M. Guignard, J. Troles, F. Smektala, and F. Sanchez, “Linear optical characterization of chalcogenide glasses”, Opt. Commun. 230, 331-336 (2004).
  • 26. J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 um”, Mater. Res. Bull. 43, 976-982 (2008).
  • 27. Y. Xu, Q. Zhang, W. Wang, H. Zeng, L. Xu, and G. Chen, “Large optical Kerr effect in bulk GeSe2-In2Se3-CsI chalcohalide glasses”, Chem. Phys. Lett. 462, 69-71 (2008).
  • 28. H. Guo, Y. Zhai, H. Tao, Y. Gong, and X. Zhao, “Synthesis and properties of GeS2-Ga2S3-PbI2 chalcohalide glasses”, Mater. Res. Bull. 42, 1111-1118 (2007).
  • 29. V. S. Vassilev, S. H. Hadjinikolova, and S.V. Boycheva, “Zn(II)-ion-selective electrodes based on GeSe2-Sb2Se3-ZnSe glasses”, Sensors Actuat. B106, 401-406 (2005).
  • 30. Z. G. Ivanova, E. Cernoskova, V. S. Vassilev, and S.V. Boycheva, “Thermomechanical and structural characterization of GeSe2-Sb2Se3-ZnSe glasses”, Mater. Lett. 57, 1025-1028 (2003).
  • 31. S. Boycheva and V. Vassilev, “Electrode-limited conductivity of amorphous chalcogenide thin films from the GeSe2-Sb2Se3-ZnSe system”, J. Optoelectron. Adv. M. 4, 33-40 (2002).
  • 32. S. Kokenyesi, V. Takats, I. Ivan, A. Csik, I. Szabo, D. Beke, P. Nemec, K. Sangunni, and M. Shiplyak, “Amorphous chalcogenide nano-multilayers: research and development”, Acta. Phys. Debreceniensis XLI, 51-57 (2007).
  • 33. I. Ivan and A. Kikineshi, “Stimulated interdiffusion and expansion in amorphous chalcogenide multilayers”, J. Optoelectron. Adv. M. 4, 743-746 (2002).
  • 34. R. Ionov, D. Nesheva, and D. Arsova, “Electrical and electrophotographic properties of CdSe/SeTe and CdSe/Se multilayers”, J. Non-Cryst. Solids 137, 1151-1154 (1991).
  • 35. Z. M. Saleh, G. A. Williams, and P. C. Taylor, “Nuclear-magnetic-resonance relaxation in glassy Cu-As-Se and Cu-As-S”, Phys. Rev. B47, 4990-5001 (1993).
  • 36. T. M. Carthy and M. G. Kanatzidis, “Synthesis in molten alkali metal polythiophosphate fluxes. The new quaternary bismuth and antimony thiophosphates ABiP2S7(A = K, Rb), A3M(PS4)2(A = K, Rb, Cs; M = Sb, Bi), Cs3Bi2(PS4)3, and Na0.16Bi1.28P2S6”, J. Alloys Comp. 236, 70-85 (1996).
  • 37. C. D. Natale, F. Davide, J. A. J. Brunink, A. D. Amico, Y. G. Vlasov, A.V. Legin, and A. M. Rudnitskaya, “Multicomponent analysis of heavy metal cations and inorganic anions in liquids by a non-selective chalcogenide glass sensor array”, Sensor Actuat. B34, 539-542 (1996).
  • 38. D. Nesheva, D. Arsova, and E. Vateva, “Electrophotographic photoreceptors including selenium-based multilayers”, Semicond. Sci. Tech. 12, 595-599 (1997).
  • 39. A. M. Efimov, “Vibrational spectra, related properties, and structure of inorganic glasses”, J. Non-Cryst. Solids 253, 95-118 (1999).
  • 40. A. Goetzberger and C. Hebling, “Photovoltaic materials, past, present, future”, Sol. Energ. Mat. Sol. C. 62, 1-19 (2000).
  • 41. G. G. Naumis, “Contribution of floppy modes to the heat capacity jump and fragility in chalcogenide glasses”, Phys. Rev. B-Rapid Comm. 61, 9205-9208 (2000).
  • 42. J. Mortensen, A. Legin, A. Ipatov, A. Rudnitskaya, Y. Vlasov, and K .Hjuler, “A flow injection system based on chalcogenide glass sensors for the determination of heavy metals”, Anal. Chim. Acta 403, 273-277 (2000).
  • 43. Y. Mourizina, T. Yoshinobu, J Schubert, H Luth, H Iwasaki, and M.J Schoning, “Ion-selective light-addressable potentiometric sensor (LAPS) with chalcogenide thin film prepared by pulsed laser deposition”, Sensor Actuat. B80, 136-140 (2001).
  • 44. C. Rau, P. Armand, A. Pradel, C. P. E. Varsamis, E. I. Kamitsos, D. Granier, A. Ibanez, and E. Philippot, “Mixed cation effect in chalcogenide glasses Rb2S-Ag2S-GeS2”, Phys. Rev. B63, 184204-9 (2001).
  • 45. S. H. Messaddeq, V. K. Tikhomirov, Y. Messaddeq, D. Lezal, and M. Siu Li, “Light-induced relief gratings and a mechanism of metastable light-induced expansion in chalcogenide glasses”, Phys. Rev. B63, 224203-5 (2001).
  • 46. J. W. P. Hsu, “Near-field scanning optical microscopy studies of electronic and photonic materials and devices”, Mater. Sci. Eng. R:Reports, 33, 1-50 (2001).
  • 47. R. A. Narayanan, S. Asokan, and A. Kumar, “Influence of chemical disorder on electrical switching in chalcogenide glasses”, Phys. Rev. B63, 092203-4 (2001).
  • 48. P. S. Salmon and S. Xin, “The effect of covalent versus ionic bonding in chalcohalide glasses:(CuI)0.6(Sb2Se3)0.4”, Phys. Rev. B65, 064202-4 (2002).
  • 49. I. D. Aggarwal and J. S. Sanghera, “Development and applications of chalcogenide glass optical fibres at NRL”, J. Opto. Adv. M. 4, 665-678 (2002).
  • 50. K. Jackson and S. Srinivas, “Modelling the 119 Sn Mössbauer spectra of chalcogenide glasses using density-functional theory calculations”, Phys. Rev. B65, 214201-8 (2002).
  • 51. K. Tanaka, “Nanostructured chalcogenide glasses”, J. Non-Cryst. Solids 326-327, 21-28 (2003).
  • 52. M. Micoulaut and J. C. Phillips, “Rings and rigidity transitions in network glasses”, Phys. Rev. B67, 104204-9 (2003).
  • 53. D. Lezal, J. Pedlikov, and J. Zavadil, “Chalcogenide glasses for optical and photonics applications”, Chalcogenide Lett. 1, 11-15 (2004).
  • 54. V. S. Vassilev and S. V. Boycheva, “Chemical sensors with chalcogenide glassy membranes”, Talanta 67, 20-27 (2005).
  • 55. D. Emin, “Current-driven threshold switching of a small polaron semiconductor to a metastable conductor”, Phys. Rev. B74, 035206-10 (2006).
  • 56. S. Kokenyesi, “Amorphous chalcogenide nano-multilayers: research and development”, J. Optoelectron. Adv. M. 8, 2093-2096 (2006).
  • 57. J. C. Phillips, “Ideally glassy hydrogen-bonded networks”, Phys. Rev. B73, 024210-10 (2006).
  • 58. M. E. Bosch, A. J. R. Sanchez, F. S. Rojas, and C. B. Ojeda, “Recent development in optical fibre biosensors”, Sensors 7, 797-859 (2007).
  • 59. V. Vassilev, K. Tomova, V. Parvanova, and S. Parvanov, “New chalcogenide glasses in the GeSe2-Sb2Se3-PbSe system”, Mater. Chem. Phys. 103, 312-317 (2007).
  • 60. J. B. Wachter, K. Chrissafis, V. Petkov, C. D. Malliakas, D. Bilc, T. Kyratsia, K. M. Paraskevopoulos, S. D. Mahanti, T. Torbrugge, H. Eckert, and M. G. Kanatzidis, “Local structure and influence of bonding on the phase-change behaviour of the chalcogenide compounds K1-xRbxSb5S8”, J. Solid State Chem. 180, 420-431 (2007).
  • 61. V. G. Taeed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Yong Choi, S. Madden, and B. L. Davies, “Ultrafast all-optical chalcogenide glass photonic circuits”, Opt. Express 15, 9205-9221 (2007).
  • 62. A. Dahshan, K. A. Aly , and M. T. Dessouky, “Thermal stability and activation energy of some compositions of Ge-Te-Cu chalcogenide system”, Philos. Mag. 88, 2399-2410 (2008).
  • 63. J. Lousteau, D. Furniss, H. F. Arrand, T. M. Benson, P. Sewell, and A. B. Seddon, “Fabrication of heavy metal fluoride glass, optical planar waveguides by hot-spin casting”, J. Non-Cryst. Solids 354, 3877-3886 (2008).
  • 64. S. I. Klokishner, O. V. Kulikova, L. L. Kulyuk, A. A. Nateprov, A. N. Nateprov, S. M. Ostrovsky, A. V. Palii, O. S. Reu, and A. V. Siminel, “Concentration effects in the photoluminescence spectra of ZnAl2(1-x)Cr2xS4”, Opt. Mater. 31, 284-290 (2008).
  • 65. D. Ielmini, “Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses”, Phys. Rev. B78, 035308-8 (2008).
  • 66. N. Mehta, K. Singh, and S. Kumar, “Effect of Sb and Sn additives on the activation energies of glass transition and crystallization in binary Se85Te15alloy”, Phase Transit. 82, 43-51 (2009).
  • 67. M. Turek,W. Heiden, A. Riesen, T. A. Chhabda, J. Schubert,W. Zander, P. Kruger, M. Keusgen, and M. J. Schoning, “Artificial intelligence/fuzzy logic method for analysis of combined signals from heavy metal chemical sensors”, Electrochim. Acta 54, 6082-6088 (2009).
  • 68. M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. B. Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. L. Person, F. Colas, C. Compre, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing”, Sensors 9, 7398-7411 (2009).
  • 69. M. A. M. Khan, M. W. Khan, M. Husain, and M. Zulfequar, “Electrical transport and optical properties of Zn doped Bi–Se chalcogenide glasses”, J. Alloys Comp. 486, 876– 880 (2009).
  • 70. G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M.F. Churbanov, “High-purity chalcogenide glasses for fibre optics”, Inorganic Mater+ 45, 1439-1460 (2009).
  • 71. S. Kumar, K. Singh, and N. Mehta, “Calorimetric studies of crystallisation kinetics of Se75Te15-xCd10Inx multi-component chalcogenide glasses using non-isothermal DSC”, Phil. Mag. Lett. 90, 547-557 (2010).
  • 72. H. Peng and Z. Liu, “Organic charge-transfer complexes for STM-based thermochemical-hole-burning memory”, Coord. Chem. Rev. 254, 1151-1168 (2010).
  • 73. S. Venkatachalam, Y. L. Jeyachandran, P. Sureshkumar, A. Dhayalraj, D. Mangalaraj, S. K. Narayandass, and S. Velumani, “Characterization of vacuum-evaporated ZnSe thin films”, Mater. Charact. 58, 794-799 (2007).
  • 74. B. H. Sharmila and S. Asokan, “Studies on electrical switching behaviour of As-Te-Tl glasses - effect of local structure on switching type and composition dependence of switching voltages”, Appl. Phys. A82, 345-348 (2006).
  • 75. A. Piarristeguy, M. Ramonda, A. Urena, A. Pradel, and M. Ribes, “Phase separation in Ag-Ge-Se glasses”, J. Non-Cryst. Solids 353, 1261-1263 (2007).
  • 76. R. M. Almeida, L. F. Santos, A. Simens, A. Ganjoo, and H. Jain, “Structural heterogeneity in chalcogenide glass films prepared by thermal evaporation”, J. Non-Cryst. Solids 353, 2066-2068 (2007).
  • 77. A. A. Abu-Sehly, “Structural and kinetic studies of crystallization of Te51As42Cu7 chalcogenide glass”, J. Alloys Comp. 486, 97-102 (2009).
  • 78. R. J. Swanepoel, “Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films”, Phys. E: Sci. Instrum. 17, 896-903 (1984).
  • 79. A. K. Singh, N. Mehta, and K. Singh, “Optical and FTIR properties of Se93XZn2Te5InX chalcogenide glasses”, Physica B404, 3470-3474 (2009).
  • 80. R. A. Street and N. F. Mott, “States in the gap in glassy semiconductors”, Phys. Rev. Lett. 35, 1293-1296 (1975).
  • 81. D. Adler and E. J. Yoffa, “Localized electronic states in amorphous semiconductors”, Can. J. Chem. 55, 1920-1929 (1977).
  • 82. D. K. Biegelsen and R. A. Street, “Photoinduced defects in chalcogenide glasses”, Phys. Rev. Lett. 44, 803-806 (1980).
  • 83. V. I. Arkhipov, E. V. Emelianova, P. Hetrogen, and G. J. Adriaenssens, “An electronic model of photoinduced optical anisotropy in chalcogenide glasses”, Phil. Mag. Lett. 79, 463-479 (1999).
  • 84. J. C. Phillips, “Vibrational thresholds near critical average coordination in alloy network glasses”, Phys. Rev. B31, 8157-8163 (1985).
  • 85. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, Oxford University Press, New York, 1979.
  • 86. A. K. Jonschere and R. M Hill, Physics of Thin Films, edited by G. M. H. Hass, R. W. Hofman, Academic Press, New York, 1975.
  • 87. R. M. Hill, “Poole-Frenkel conduction in amorphous solids”, Philos. Mag. 23, 59-86 (1971).
  • 88. N. Suri, K. S. Bindra, P. Kumar, M. S. Kamboj, and R. Thangaraj, “Thermal investigations in bulk Se80-xTe20Bix chalcogenide glass”, J. Ovonic Res. 2, 111-118 (2006).
  • 89. M. M. A. Imran, D. Bhandari, and N. S. Saxena, “Enthalpy recovery during structural relaxation of Se96In4 chalcogenide glass”, Physica B293, 394-409 (2001).
  • 90. P. Agarwal, S. Goel, J. S. P. Rai, and A. Kumar, “Calorimetric studies in glassy Se80-xTe20Inx”, Phys. Stat. Sol. A127, 363-369 (1991).
  • 91. A. Dietzel, “Glass structure and glass properties”, Glasstech. Berl. 22, 41-50 (1968).
  • 92. M. Saad and M. Poulin, “Glass forming ability criterion”, Mater. Sci. Forum 19-20, 11-18 (1987).
  • 93. A. Hruby, “Evaluation of grass-forming tendency by means of DTA”, Czech J. Phys. B22, 1187-1193 (1972).
  • 94. N. Mehta, R. S. Tiwari, and A. Kumar, “Glass forming ability and thermal stability of some Se-Sb glassy alloys”, Mater. Res. Bull. 41, 1664-1672 (2006).
  • 95. P. K. Jain Deepika and N. S. Saxena, “Glass transition, thermal stability and glass-forming ability of Se90In10-xSbx(x = 0, 2, 4, 6, 8, 10) chalcogenide glasses”, Philos. Mag. 89, 641-650 (2009).
  • 96. J. C. Phillips, “Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys”, J. Non-Cryst. Solids 34, 153-181 (1979).
  • 97. M. F. Thorpe, “Continuous deformations in random networks”, J. Non-Cryst. Solids 57, 355-370 (1983).
  • 98. K. Tanaka, “Structural phase transitions in chalcogenide glasses”, Phys. Rev. B39, 1270-1279 (1989).
  • 99. S. Jayakumar, P. Predeep, and C. H. Unnithan, “Topology of chemical ordering in Sb-S-Ge system”, Phys. Scripta 66, 180-182 (2002).
  • 100. A. Srinivasan, K. Ramesh, K. N. Madhusoodanan, and E. S. R. Gopal, “High-pressure studies on the critical composition in Ge-As-Te glasses”, Phil. Mag. Lett. 65, 249-253 (1992).
  • 101. M. Zhang, S. Mancin, W. Bresser, and P. Boolchand, “Variation of glass transition temperature, Tg, with average coordination number, m, in network glasses: evidence of a threshold behaviour in the slope dTg/dm at the rigidity percolation threshold (m = 2.4)”, J. Non-Cryst. Solids 151, 149-154 (1992).
  • 102. S. Mahadevan and A. Giridhar, “Thermal expansion and network constraints in Ge-In-Se glasses”, J. Non-Cryst. Solids 162, 294-300 (1993).
  • 103. A. K. Varshneya, A. N. Sreeram, and D. R. Swiler, “A review of the average coordination number concept in multicomponent chalcogenide glass systems”, Phys. Chem. Glasses 34, 179-192 (1993).
  • 104. L. Tichy and H. Ticha, “Is the chemical threshold in certain chalcogenide glasses responsible for the threshold at the mean coordination number of approximately 2.7?”, Philos. Mag. B79, 373-380 (1999).
  • 105. G. Saffarini and J. M. Saiter, “Compactness in relation to the mean coordination number in glassy GexBi6S94-x,” Chalcogenide Lett. 3, 49–53 (2006).
  • 106. G. Lucovsky, F. L. Galeener, R. H. Geils, and R. C. Keezer, “The Structure of Non-Crystalline Materials”, edited by P. H. Gaskell, Taylor and Francis, London, 1977.
  • 107. G. Lucovsky, R. J. Nemanich, and F. L. Galeener, Proc. 7th International Conference on Amorphous Liquid Semiconductors, edited by W. Spear, University of Edinburgh, Edinburgh, 1977.
  • 108. F. Betts, A. Bienesock, and S. R. Ovshinsky, “Radial distribution studies of amorphous GexTe1-xalloys”, J. Non-Cryst. Solids 4, 554-563 (1970).
  • 109. G. Lucovsky, F. L. Galeener, R. C. Keezer, R. H. Geils, and H.A. Six, “Structural interpretation of the infrared and Raman spectra of glasses in the alloy system Ge1-xSx”, Phys. Rev. B10, 5134-5146 (1974).
  • 110. J. C. Phillips and M. F. Thorpe, “Constraint theory, vector percolation and glass formation”, Sol. Stat. Comm. 53, 699-702 (1985).
  • 111. C. H. Hurst and E. A. Davis, Proc. 5th Int. Conf. Amorphous and Liquid Semiconductors, p. 349, Taylor and Francis, London, 1974.
  • 112. P. Boolchand, “Metallic and semiconducting glasses I”, Key Eng. Mater. 13-15, 131 (1987).
  • 113. S. Mahadevan and A. Giridhar, “On the chemical and mechanical thresholds of some chalcogenide glasses”, J. Non-Cryst. Solids 110, 118-121 (1989).
  • 114. J. C. Phillips, “Continuous deformations in random networks”, J. Non-Cryst. Solids 57, 355-370 (1983).
  • 115. A. Anedda, C. M. Carbonaro, A. Serpi, N. Chiodini, A. Paleari, R. Scott, G. Brambilla, and V. Pruneri, “Vacuum ultraviolet absorption spectrum of photorefractive Sn-doped silica fiber preforms”, J. Non-Cryst. Solids 280, 287-291 (2001).
  • 116. S. V. Nemilov, “Kinetic aspects of the vitreous state”, Sov. J. Phys. Chem. 37, 1026-1027 (1964).
  • 117. A. Feltz, Amorphous Inorganic Materials and Glasses, VCH, Weinheim, 1993.
  • 118. Z. U. Borisova, Glassy Semiconductors, Plenum Press, New York, 1981.
  • 119. A. Giridhar and S. Mahadevan, “The Tg versus Z dependence of glasses of the Ge-In-Se system”, J. Non-Cryst. Solids 151, 245-252 (1992).
  • 120. G. Saffarini, “Atomic density versus average coordination number in Ge-In-Se glasses”, Phys. Stat. Sol. B213, 261-265 (1999).
  • 121. J. Tauc, Amorphous and Liquid Semiconductors, Plenum Press, New York, 1979.
  • 122. F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids”, Phys. Rev. 92, 1324-1324 (1953).
  • 123. H. Fritzsche, “Toward understanding the photoinduced changes in chalcogenide glasses”, Semiconductors 32, 952-957 (1998).
  • 124. E. V. Emelianova, P. Hertogen, V. I. Arkhipov, and G. J. Adriaenssens, “Amodel of photoinduced anisotropy in chalcogenide glasses”, J. Non-Cryst. Solids 266-269, 954-958 (2000).
  • 125. P. W. Anderson, “Model for the electronic structure of amorphous semiconductors”, Phys. Rev. Lett. 34, 953-955 (1975).
  • 126. S. G. Bishop, U. Strom, and P. C. Taylor, “Optically induced localized paramagnetic states in chalcogenide glasses”, Phys. Rev. Lett. 34, 1346-1350 (1975).
  • 127. G. J. Adriaenssens and A. Stesmans, “Gap states in chalcogenide glasses”, J. Optoelectron. Adv. M. 4, 837-842 (2002).
  • 128. A. M. Andriesh, M. S. Iovu, and S. D. Shutov, “Chalcogenide non-crystalline semiconductors in optoelectronics”, J. Opto-electron. Adv. M. 4, 631-647 (2002).
  • 129. C. Kittel, “Interpretation of the thermal conductivity of glasses”, Phy. Rev. 75, 972-974 (1949).
  • 130. A. K. Singh and K. Singh, “Observation of Meyer Neldel rule and crystallization rate constant stability for Se93-xZn2Te5Inx chalcogenide glasses”, Eur. Phys. J. Appl. Phys. 51, 30301 (2010).
  • 131. J. A. Augis and J. E. Bennett, “Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method”, J. Therm. Anal. 13, 283-292 (1978).
  • 132. N. Zotov, F. Bellido, M. Dominguez, R. Jimenez-Garay, A. C. Hannon, and R. Sonntag, “Effect of copper on the structure and other physical properties of Cu-As-Te chalcogenide glasses”, J. Phys. Chem. Solids 58, 1625-1630 (1997).
  • 133. O. Gamulin, M. Ivanda, V. Mitsa, S. Pasic, and M. Balarin, “Effect of copper on the structure and other physical properties of Cu-As-Te chalcogenide glasses”, J. Solid State Comm. 135, 753-758 (2005).
  • 134. S. A. Fayek and M. Fadel, “Crystallization kinetics for Sb added to GeSe chalcogenide glass”, J. Non-Oxide Glasses 3, 239-246 (2009).
  • 135. L. Pauling, Die Natur der Chemischen Binding, VCH, Weinbeim, 1976. (in German)
  • 136. N. B. Maharjan, D. Bhandari, N. S. Saxena, D. D. Paudyal, and M. Husain, “Kinetic Studies of Bulk Se85-xTe15Sbx Glasses with x = 0, 2, 4, 6, 8 and 10”, Phys. Status Solidi A178, 663-670 (2000).
  • 137. G. Saffarini, “The effect of compositional variations on the glass-transition and crystallisation temperatures in Ge-Se-In glasses”, Appl. Phys. A74, 283-285 (2002).
  • 138. R. M. Abdel Latif, “DC Electrical measurements on evaporated thin films of vanadium pentoxide”, Physica B254, 273-276 (1998).
  • 139. A. K. Singh, “Effect of indium additive on heat capacities of Se-Zn-Te multicomponent chalcogenide glasses” Chacogenide Lett. 8, 123-128 (2011).
  • 140. A. K. Singh and K. Singh, “Localized structural growth and kinetics of Se98-xZn2Inx (0 x 10) amorphous alloys”, Phys. Scr. 83, 025605-6 (2011).
  • 141. A. K. Singh, “Effect of indium additive on the heat capacity of Se-Zn chalcogenide glasses” Eur. Phys. J. Appl. Phys. 55, 11103-4 (2011).
  • 142. G. Saffarini, “Glass transition temperature and molar volume versus average coordination number in Ge100-xSx bulk glasses”, Appl. Phys. A59, 385-388 (1994).
  • 143. P. M. Bridenbaugh, G. P. Espinosa, J. E. Griffiths, J. C. Phillips, and J. P. Remeka, “Microscopic origin of the companion A1 Raman line in glassy Ge(S,Se)2”, Phys. Rev. B20, 4140-4144 (1979).
  • 144. L. E. Busse, “Temperature dependence of the structures of As2Se3 and AsxS1-x glasses near the glass transition”, Phys. Rev. B29, 3639-3651 (1984).
  • 145. A. J. Leadbetter and A. J. Apling, “Deviations from Newtonian rheological behaviour in alkali borate glasses”, J. Non-Cryst. Solids 1, 150-162 (1974).
  • 146. D. I. Bletskan, “Glass formation in binary and ternary chalcogenide systems”, Chalcogenide Lett. 3, 81-119 (2006).
  • 147. D. R. Swiler, A. K. Varshneya, and R. M. Callahan, “Microhardness, surface toughness and average coordination number in chalcogenide glasses” J Non-Cryst Solids 125, 250-257 (1990).
  • 148. A. Srinivasan, K. Ramesh, K. N. Madhusoodnan, and E. S. R. Gopal, “High-pressure studies on the critical composition in Ge-As-Te glasses”, Phil. Mag. Lett. 65, 249-253 (1992).
  • 149. E. Savova and V. Pamukchieva, “Calorimetric measure ments on Ge-Sb-S glasses”, Semicond. Sci. Tech. 12, 185-188 (1997).
  • 150. A. B. Adam, S. Sakrani, and Y. Wahab, “Glass-formation region of ternary Sn-Sb-Se-based chalcogenide glasses”, J. Mater. Sci. 40, 1571-1576 (2005).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0053-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.