PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dispersion management in soft glass all-solid photonic crystal fibres

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The development of all-solid photonic crystal fibres for nonlinear optics is an alternative approach to air-glass solid core photonic crystal fibres. The use of soft glasses ensures a high refractive index contrast (> 0.1) and a high nonlinear coefficient of the fibres. We report on the dispersion management capabilities in all-solid photonic crystal fibres taking into account four thermally matched glasses which can be jointly processed using the stack-and-draw fibre technique. We present structures with over 450 nm broadband flat normal dispersion and ultra-flat near zero anomalous dispersion below 5 ps/nm/km over 300 nm dedicated to supercontinuum generation with 1540 nm laser sources. The development of an all-solid photonic crystal fibre made of F2 and NC21 glasses is presented. The fibre is used to demonstrate supercontinuum generation in the range of 730–870 nm (150 nm) with flatness below 5 dB.
Twórcy
autor
autor
autor
autor
autor
autor
  • Institute of Electronic Materials Technology (ITME), 133 Wólczyńska Str., 01-919, Warsaw, Poland, rbuczyns@igf.fuw.edu.pl
Bibliografia
  • 1. H. Bartelt, J. Kirchhof, J. Kobelke, K. Schuster, A. Schwuchow, K. Mörl, U. Röpke, J. Leppert, H. Lehmann, S. Smolka, M. Barth, O. Benson, S. Taccheo, and C. D’Andrea, “Preparation and application of functionalized photonic crystal fibres”, Phys. Status Solidi A204, 3805-3821 (2007).
  • 2. R. Buczynski, D. Pysz, R. Stepien, A. J. Waddie, I. Kujawa, R. Kasztelanic, M. Franczyk, and M. R. Taghizadeh, “Supercontinuum generation in photonic crystal fibres with nanoporous core made of soft glass”, Laser Phys. Lett. 8, 443-448 (2011).
  • 3. A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, “Photonic-crystal-fibre solutions for ultrafast chromium forsterite laser technologies”, Laser Phys. Lett. 4, 775-780 (2007).
  • 4. H. Ebendorff-Heidepriem and T. M. Monro, “Soft glass microstructured optical fibres: Recent progress in fabrication and opportunities for novel optical devices”, in 11th Int. Conf. On Transparent Optical Networks, pp. 1-4, Azores, 2009.
  • 5. D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibres”, Appl. Phys. B-Lasers O. 93, 531–538 (2008).
  • 6. V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Raman effects in the infrared supercontinuum generation in soft-glass PCFs”, Appl. Phys. B-Laser O. 87, 37-44 (2007).
  • 7. R. Buczynski, H. T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J. E. McCarthy, A. J. Waddie, A. K. Kar, and M. R. Taghizadeh, “Supercontinuum generation up to 2.5 um in photonic crystal fibre made of lead-bismuth-gallate glass”, Laser Phys. Lett. 7, 666-672 (2010).
  • 8. R. Buczynski, D. Pysz, T. Martynkien, D. Lorenc, I. Kujawa, T. Nasilowski, F. Berghmans, H. Thienpont, and R. Stepien, “Ultra flat supercontinuum generation in silicate dual core microstructured fibre”, Laser Phys. Lett. 6, 575-581 (2009).
  • 9. V. L. Kalashnikov, E. Sorokin, S. Naumov, I. T. Sorokina, V. V. Ravi Kanth Kumar, and A. K. George, “Low-threshold supercontinuum generation from an extruded SF6 PCF using a compact Cr4+:YAG laser”, Appl. Phys. B-Laser O. 79, 591–596 (2004).
  • 10. X. Feng, T. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, “Solid microstructured optical fibre”, Opt. Express 11, 2225-2230 (2003).
  • 11. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fibre”, Opt. Lett. 29, 2369-2371 (2004).
  • 12. A. Argyros, T. Birks, S. Leon-Saval, C. M. Cordeiro, F. Luan, and P. St. J. Russell, “Photonic bandgap with an index step of one percent”, Opt. Express 13, 309-314 (2005).
  • 13. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all solid 2D photonic bandgap fibre with a low-loss region (< 20 dB/km) around 1550 nm”, Opt. Express 13, 8452-8459 (2005).
  • 14. G. Ren, P. Shum, L. Zhang, X. Yu, W. Tong, and J. Luo, “Low-loss all-solid photonic bandgap fibre”, Opt. Lett. 32, 1023–1025, (2007).
  • 15. J. Fini, “Design of solid and microstructure fibres for suppression of higher-order modes,” Opt. Express 13, 3477-3490 (2005).
  • 16. M.-Y. Chen, “All-solid silica-based photonic crystal fibres”, Opt. Commun. 266, 151-158 (2006).
  • 17. F. Poletti, X. Feng, G. M. Ponzo, M. N. Petrovich, W. H. Loh, and D.J. Richardson, “All-solid highly nonlinear singlemode fibres with a tailored dispersion profile”, Opt. Express 19, 66-80 (2011).
  • 18. Camerlingo, X. Feng, F. Poletti, G. Ponzo, F. Parmigiani, P. Horak, M. Petrovich, P. Petropoulos, W. Loh, and D. Richardson, “Near-zero dispersion, highly nonlinear leadsilicate W-type fibre for applications at 1.55 um”, Opt. Express 18, 15747-15756 (2010).
  • 19. X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single-mode high-index-core one-dimensional microstructured optical fibre with high index-contrast for highly nonlinear optical devices”, Appl. Phys. Lett. 87, 1-3 (2005).
  • 20. X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fibre for nonlinear applications at 1.55 um”, Opt. Express 17, 20249-20255 (2009).
  • 21. S. Ghosh, R. K. Varshney, B. P. Pal, and G. Monnom. “A Bragg-like chirped clad all-solid microstructured optical fibre with ultra-wide bandwidth for short pulse delivery and pulse reshaping”, Opt. Quant. Electronics 42, 1-14 (2010).
  • 22. A. Wang, A. George, J. Liu, and J. Knight, “Highly biref ringent lamellar core fibre”, Opt. Express 13, 5988-5993 (2005).
  • 23. B. Kibler, T. Martynkien, M. Szpulak, C. Finot, J. Fatome, J. Wojcik, W. Urbanczyk, and S. Wabnitz, “Nonlinear femtosecond pulse propagation in an all-solid photonic bandgap fibre”, Opt. Express 17, 10393-10398 (2009).
  • 24. A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibres”, J. Opt. Soc. Am. B27, 550–559 (2010).
  • 25. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fibre”, Rev. Mod. Phys. 78, 1135-1184 (2006).
  • 26. R. W. Pryor, Multiphysics Modelling Using COMSOL®: A First Principles Approach, Jones and Bartlett Publishers, Sadbury, 2011.
  • 27. M. Bache, H. Nielsen, J. Laegsgaard, and O. Bang, “Tuning quadratic nonlinear photonic crystal fibres for zero group-velocity mismatch”, Opt. Lett. 31, 1612-1614 (2006).
  • 28. Supercontinuum Generation in Optical Fibre, edited by J. M. Dudley and J.R. Taylor, Cambridge University Press, 2010.
  • 29. Optical glass data sheets, http://www.schott.com/advanced_optics/english/.
  • 30. D. Lorenc, I. Bugar, M. Aranyosiova, R. Buczynski, D. Pysz, D. Velic, and D. Chorvat, “Linear and nonlinear properties of multicomponent glass photonic crystal fibres,” Laser Phys. 18 (3), 270-276 (2008).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0053-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.