
BIULETYN INSTYTUTU SYSTEMÓW INFORMATYCZNYCH 7 69−76 (2011)

 69

Optimal Resource Allocation for Reliability of Modular Software Systems

K. WORWA, J. STANIK

kazimierz.worwa@wat.edu.pl

Institute of Computer and Information Systems
Faculty of Cybernetics, Military University of Technology

Kaliskiego Str. 2, 00-908 Warsaw, Poland

Considerable development resources are consumed during the software-testing phase. The software
development manager has to decide how to use the testing-resources effectively in order to maximize the
software quality and reliability. The paper discusses a management problem to achieve a reliable software
system efficiently during the module testing stage by applying a software reliability growth model. This model
both describes the software-error detection phenomenon and represents the relationship between the
cumulative number of errors encountered by software testing and the time span of the testing. As testing cost
and software reliability are both important factors in the testing-resource allocation problems an investigation
is performed in the paper to search for the optimal solution for modular software system with the objectives of
maximising system reliability and minimising testing cost.

Keywords: modular software systems, software testing, software reliability.

1. Introduction

It is well known that a software development
process consists of the following four phases:
specification (including user requirements
definition and software functional and non-
functional requirements specification), design
(structural design and detailed design), coding
and testing. The reciprocal relationships between
these phases, including phase sequence and
development activities range, depend on
assumed software life cycle model.

Practically, a software testing process
consists of several testing stages including
module testing, integration testing, system
testing and installation testing. During the testing
phase, software faults can be detected and
removed. The quality of the tests usually
corresponds to the maturity of the software test
process, which in turn relates to the maturity of
the overall software development process.
In general, most popular and commercial
software products are complex systems
composed of a number of modules. Typically,
module testing is the most time-critical part of
testing to be performed. All the testing activities
of different modules should be completed within
a limited time, and these activities normally
consume approximately 40−50% of the total
amount of software development resources [14].
Therefore, project managers should know how to
allocate the specified testing-resources among all
the modules and develop quality software with

high reliability. During the unit-testing phase, all
the testing activities of different modules are
competing for the limited testing-resource, i.e.
testing time and testing cost. Thus, a critical
problem is how to allocate the total available
program testing-resource among program
modules in an optimal way. There are many
papers that investigate this problem,
e.g. [6] has presented an overview of the
methods that have been developed for solving
various reliability optimization problems
including testing resource allocation problems;
in paper [9] two resource allocation problems for
software-module testing are formulated and
solved, considering the mean number of
remaining faults in the software modules; paper
[7] studied a dynamic resource allocation
strategy for software module testing; in paper
[13] the problem of determining an optimal
testing strategy is investigated.

The optimal testing-resource allocation
problem is important, but difficult in project
planning and management. It has been studied
extensively in the literature (see e.g. [2, 6, 7, 9,
14]). When only limited resources are available
during testing of a software system, it is
important to allocate the testing resources
efficiently, so that the maximum reliability of
the complete system is achieved.

Testing cost and software reliability are
both important factors in the testing-resource
allocation problems. This paper discusses
a management problem to achieve a reliable
software system efficiently during module

K.Worwa, J.Stanik, Optimal Resource Allocation for Reliability of Modular Software Systems

 70

testing stage by means of formulating and
solving the testing-resource allocation
optimization problem with the objectives of
maximizing program reliability and minimizing
the program testing cost. Section 2 introduces
a formal model of a program testing process.
This model considers the effect of testing-
-resources on the software reliability growth.
Section 3 uses the program testing model to
derive optimal allocation of the testing-resources
for module testing. Finally, section 4 presents a
numerical example to illustrate the method of
determining an optimal program reliability
structure.

2. Description of the Program

Testing Process

We assume that the program under the testing
process consists of several modules. Although
there is no universally accepted definition of
modularization, most programmers would
conceive a module as a fragment of a program
that carries out a specific function and may be
used alone or combined with other modules of
the same program. This usually implies that a
module can be designed, implemented, and
tested independently. Since a large-scale
program always involves a substantial number of
programmers working concurrently, a large
program can be viewed as a collection of
logically independent modules. A module is
usually defined to perform a particular function.
Let M mean a set of module numbers of the
program under the testing,

},...,,...,3,2,1{ Mm=M . Let us define the
reliability of a module as the probability that the
module performs the function correctly, i.e., the
module produces the correct output and transfers
control to the next module correctly. When a set
of user input is supplied to the program,
a sequence of modules will be executed. The
reliability of the output will depend on the
sequence of modules executed and the reliability
of each individual module. We first assume that
the reliabilities of the modules are independent.
This means that errors will not compensate each
other, i.e., an incorrect output from a module
will not be corrected later by subsequent
modules. Since errors do not compensate each
other, the result of the execution of the program
is correct, if and only if the correct sequence of
modules is executed and in every instance of
module execution the module produces the
correct result. The reliability of a module, in
general, is a function of many factors, and the

study of the reliability function of a module is
beyond the scope of this paper. However, if no
modification is made on the modules and the
user environment does not change, the reliability
function of a module should remain invariant.
Let mR stand for the m-th module reliability
function. We will assume that the module
reliability functions can be determined and the
following vector),...,,...,,,(321 Mm RRRRR=R
will be called a program reliability structure.

We next assume that the transfer of control
among program modules is a Markov process.
This implies that the next module to be executed
will depend probabilistically on the present
module only and is independent of the past
history. It is noteworthy that this assumption
may not be valid for all types of programs.
Although the assumption of Markovian behavior
of control flow at the instruction level is
questionable, experiments performed by
researchers in memory management and
scheduling have shown that this assumption may
be valid at the macroscopic level, i.e. module
level for a large number of programs [4, 8].

Let us represent the control structure of the
program by a directed graph where every node i
represents a program module and a directed
branch (i, j) represents a possible transfer of
control from i to j. To every directed branch (i, j)
we will attach a probability ijp as the probability
that the transition (i, j) will be taken when
control is at node i. If 0=ijp , the branch (i, j)
does not exist. This transition probability
represents the branching characteristics of the
decision point at the exit point of the module i.
Without loss of generality, let us assume that the
program graph has a single entry node 1 and
a single exit node M. Let us consider every node
in the graph as a state of the Markov process,
with the initial state corresponding to the entry
node of the program graph. Two states C and F
are added as the terminal states, representing the
state of correct output and failure, respectively.
For every node i, a directed branch (i, F) is
created with transition probability iR−1
representing the occurrence of an error in the
execution of module i. Since errors do not
compensate each other, a failure in i will
ultimately lead to an incorrect program output,
regardless of the sequence of modules executed
afterwards. This phenomenon is represented by
the transition to the terminal state F. The original
transition probability between i and j is modified
into iji pR ⋅ , which represents the probability that
the execution of module i produces the correct

BIULETYN INSTYTUTU SYSTEMÓW INFORMATYCZNYCH 7 69−76 (2011)

 71

result and control is transferred to module i. For
the exit note M, a directed branch (M, C) is
created with a transition probability MR to
represent correct termination at the exit node.

Assuming that the testing process is
modelled by the above-described Markov
process let)(RP mean the transition matrix of
this process.

0...0...001
......0101

...........................
......010

........................
......0101

0...0...0010
0...0...0001

......21

)(

1

,11,112,111

2

11111211

−

−−−−−−−

−
−−

−

−
=

MM

MMMmMMMMM

mMmmmmmmm

Mm

RRM
pRpRpRRM

pRpRpRRm

pRpRpRR
F
C

MmFC

RP

, (1)

According to earlier assumptions the matrix
)(RP has the form of (1). As we mentioned

earlier vector R is the so-called program
reliability structure. The first two rows and two
columns of the matrix)(RP represent absorbing
states C, F of the Markov process.

The reliability of the program is, therefore,
the probability of reaching the terminal state C
from the initial state 1 of the Markov process.
We can express the program reliability as
a function of the reliability of the modules and
frequency distribution of utilization of these
modules. Using this approach, the reliability of
the program is a function of both the
deterministic properties of the structure of the
program and the stochastic properties of the
module failure behaviour and the utilization of
these components by the user. Ideally, we would
like a reliability model where the program
structure, in terms of its modules, can be easily
constructed, where the component reliabilities
can be independently determined, and where a
simple user profile can be measured easily by
monitoring the dynamic behaviour of the
program.

3. Optimization of the Testing-

Resource Allocation Problem

The Markov reliability model uses the program
flow graph to represent the structure of the
system so that the structure can be easily
obtained by analyzing the code. It uses

functional modules as the basic components so
that the component reliabilities are reasonably
independent. It uses the branching characteristics
among modules as the user profile so that they
can be easily measured in the operational
environment. It is noteworthy that similar
structural models are often proposed in the
literature, see e.g.[1, 3, 5, 8−10, 13]. The overall
software reliability can be expressed in terms of
individual module reliabilities and other
parameters, such as visit statistics to each
module.

Let P(R) be the matrix of order M obtained
from)(RP by deleting all the rows and columns
correspond to the absorbing states C and F.
According to earlier remarks reliability of the
program is equal to the probability of reaching
by the Markov process the terminal state C from
the initial state 1. Using a standard method of
computing absorption probabilities in the
Markov process reliability of the program can be
computed as follows [1]

MM RSR)()(1 RR = , (2)
where M1S is an element of the matrix

1))((−−= RPIS that lies on the intersection of
the first row and the M-th column, I is the
identity matrix of order M and MR is the
reliability function of the M-th module.
It should be mentioned that this method of
computing the program reliability coefficient as
given in (1) can be quite inconvenient without
the use of software that can perform the requisite

K.Worwa, J.Stanik, Optimal Resource Allocation for Reliability of Modular Software Systems

 72

symbolic linear algebra, although packages such
as Mathematica [12].

The cost of a module is associated with
a number of parameters such as the design and
development time, and testing time, and can be
assumed to be monotonically related to the value
of module reliability. The module cost –
reliability relation can be linear, exponential, and
even random while maintaining the monotonic
property. We assume that the cost of the
program consisting of M components, denoted
by)(RK can be given by function of the form

∑
=

=
M

m
mm RKK

1
)()(R (3)

where)(mmm RfK = , M∈m , is the cost of the
m-th module, if its reliability is mR ; is
reasonable to assume that the cost function

)(mmm RfK = depends monotonically on
reliability mR .
The management problem to achieve
a reliable program efficiently during the module
testing stage in the software development
process can be formulated as an optimization
problem with two objectives as follows:

maximize MM RSR)()(1 RR = , (4)

minimize ∑
=

=
M

m
mm RKK

1
)()(R , (5)

subject to constraints
min1)()(RRSR MM ≥= RR , (6)

max
1

)()(KRKK
M

m
mm ≤= ∑

=
R , (7)

),...,,...,,,(321 Mm RRRRR=R ,
1R0 m ≤≤ , M∈m , (8)

where minR is a minimal feasible value of
a program reliability and maxK is a maximal
feasible value of a program testing cost.

The testing-resource allocation problem
(4)−(8) is a bicriteria optimization problem with
nonlinear objective functions and nonlinear
constraints. A solution of this problem can be
obtained by using well known methodology of
solving multiple optimization problems [11].
According to that methodology as a solution of
the problem (4)−(8) we can determine:
• a dominate solution set
• a nondominate solution set
• a compromise solution set.
Taking into account that values of objective
functions)(RR and)(RK are inverse (in sense
that if a value)(RR is increased, the value

)(RR is increased, too) it is reasonable to expect

that the dominate solution set will empty.
In such a situation a practically recommended
approach is to determine a nondominated
solution set. If this set is very numerous we can
narrow it down by determining a so-called
compromise solution [11]. The program
reliability structure *R that to be obtained after
the solving the optimization problem (4)−(8)
will both maximize the value of the program
reliability function)(RR and minimize the
value of the program testing cost)(RK .

4. Numerical Example

The methodology of determination of the
program reliability structure that has been
presented can be illustrated by the following
numerical example. Let Fig. 1 be the directed
graph representing the control structure of
a program with five modules where 1 represents
the input module and 5 is the output module.
The set of a program component modules is

}5,4,3,2,1{ =M and the program reliability
structure is a vector),,,,(54321 RRRRR=R .

Fig. 1. A program control graph

Table 1 presents branching probabilities ijp
between the modules i and j.

Table 1. Values of branching probabilities
between the modules i and j

p11 = 0 p12 = 0.6 p13 = 0.3 p14 = 0 p15 = 0.1
p21 = 0 p22 = 0 p23 = 0 p24 = 1 p25 = 0
p31 = 0 p32 = 0 p33 = 0 p34 = 1 p35 = 0
p41 = 0.3 p42 = 0.2 p43 = 0.4 p44 = 0.1 p45 = 0

Using (1) the value of the program reliability
function can be determined as

515)()(RSR RR = , where quantity 15S can easily
be computed by means of software packages
Mathematica [12] as follows

1

2 3

4

5
p12

p15

p13

p41

p42

p24

p44

p43
p34

BIULETYN INSTYTUTU SYSTEMÓW INFORMATYCZNYCH 7 69−76 (2011)

 73

)(
)(

15 R
R

M
LS = , (9)

where:

431421411 04,002,001,01,0
)(

RRRRRRRRR
L

−−−=
=

R

and

43143

421424

09,04,0
18,02,01,01)(

RRRRR
RRRRRRM

−−
+−−−=

R

where mR is the m-th module reliability
function, }5,4,3,2,1{ =∈ Mm .

Let the cost of the m-th module
function)(mmm RfK = , M∈m , is of the form

}5,4,3,2,1{
)(

 =∈
+=

Mm
eKSRK mm R

mmmm
βα , (10)

where:
KSm – a constant component of the m-th module
testing cost,
αm, βm – shape coefficients of testing cost function
of the m-th module; their values depend on module
complexity, development technology, programmers
experience, etc.
Let values of parameters KSm, αm, βm, Rmin
and Kmax be as in Table 2.

Table 2. Values of parameters KSi, αi , βi, Rmin
 and Kmax

m 1 2 3 4 5

KSm 1000,0 400,0 1500,0 2500,0 900,0
αm 50,0 35,0 25,0 30,0 40,0
βm 5,0 2,0 8,0 10,0 4,0

Rmin 0,8
Kmax 160 000,0

For the program control graph from Fig. 1

and parameter vales in Table 1 we will solve the
bicriterial optimization problem (4)−(8).
A feasible solution set for this problem is a set of
module reliability structure vectors

),,,,(54321 RRRRR=R .
If we assume that]00.1,95.0[∈mR ,

}5,4,3,2,1{ ∈m , a cardinality number of this set
is 65=7776. It is easy to check that the dominated
solution set of the problem (4)−(8) is empty (it is
because of objective functions)(RR and)(RK
are inverse in sense their values). In that case
practically recommended approach is to
determine a nondominated solution set. The
nondominated solution set of the bicriterial
optimization problem (4)−(8) is plotted in Fig.2.
Every point among points that are situated on the
shadow contour is a nondominated solution of
the bicriterial optimization problem (4)−(8). In

order to narrow down this a nondominated
solution set we will determine a compromise
solution of this problem, i.e. such a solution
belongs to the nondominated solution set that is
nearest (in the sense of Euclidean distance) to
the so-called ideal point [11]. For this reason
both objective functions)(RR and)(RK
determined by (6) and (7), respectively, will be
normalized by means of the following formulae:

)()(
)()(

minmax

min
RR

RRR
KK

KK
−

−=)K(, (11)

)()(
)()(

minmax

min
RR

RRR
RR

RR
−

−=)R(, (12)

where:
)(min)(min RR KK = ,)()(min RR RR min =

(13)

)(Kmax)(K max RR = ,)()(max RR RR max = ,

(14)

where R is a set of all feasible program
reliability structure, i.e.
R = ,10:),,,,({ 54321 ≤≤= mRRRRRRR

} }5,4,3,2,1(=∈Mm .
As a result of the normalization (10)−(11) both
normalized objective functions)K(R and)R(R
have values belong to range [0, 1].
It is easy to notice that in the example that is

considered the ideal point))(R),(K(** RR is of

the form of)1,0())(R),(K(** =RR .
Table 2 presents the results of determination
of the optimisation problem (3)−(7).
The row that corresponds to the vector

)00.1,00.1,95.0,00.1,00.1(* =R is the
compromise solution of this problem, i.e. such
a vector that is nearest to the ideal point (0, 1),
where a distance function 1)] (0,),R(),K(d[(RR
is of the form of

22 1]-)R()]K(

1)] (0,),R(),K(d[(

RR

RR

[[+=

=
.

 (15)
It is easy to notice that the vector

)00.1,00.1,95.0,00.1,00.1(* =R complies with
the following condition

1)] (0,)),R(),K(d[(

1)] (0,),R(),K(d[(

RR

RR

min

**

=

=

(16)

R∈RR∈R

R∈R R∈R

R∈R

K.Worwa, J.Stanik, Optimal Resource Allocation for Reliability of Modular Software Systems

 74

The values of the objective functions)(RR
and)(RK for the compromise solution

)00.1,00.1,95.0,00.1,00.1(* =R
are R(R*) = 0,8711 and K(R*) = 158 481,43.

Fig. 2. The nondominated solution set of the optimization problem (4)−(8)

Table 2. The compromise solution of the optimization problem (4)−(8)

R1 R2 R3 R4 R5)R(R)K(R 1)] (0,),R(),K(d[(RR
1,00 1,00 0,99 0,99 0,99 0,5888 0,77 0,876889
1,00 1,00 0,99 0,99 1,00 0,5981 0,78 0,874058
1,00 1,00 0,99 1,00 0,95 0,7705 0,88 0,909792
1,00 1,00 0,99 1,00 0,96 0,7821 0,88 0,908320
1,00 1,00 0,99 1,00 0,97 0,7936 0,88 0,907053
1,00 1,00 0,99 1,00 0,98 0,8052 0,88 0,905995
1,00 1,00 0,99 1,00 0,99 0,8168 0,89 0,905147
1,00 1,00 0,99 1,00 1,00 0,8284 0,89 0,904515
1,00 1,00 1,00 0,95 0,95 0,2088 0,51 0,942643
1,00 1,00 1,00 0,95 0,96 0,2145 0,51 0,938661
1,00 1,00 1,00 0,95 0,97 0,2201 0,52 0,934730
1,00 1,00 1,00 0,95 0,98 0,2258 0,52 0,930854
1,00 1,00 1,00 0,95 0,99 0,2315 0,52 0,927034
1,00 1,00 1,00 0,95 1,00 0,2372 0,52 0,923273
1,00 1,00 1,00 0,96 0,95 0,2720 0,59 0,939384

5. Conclusions

This paper proposes a method of determining the
optimal program reliability structure for the
purpose of the program testing stage realization.
The optimal program reliability structure that is
to be obtained after solving the bicriteria
optimization problem (4)−(8) both maximizes
the value of the program reliability function

)(RR and minimizes the value of the program
testing cost)(RK .

For formulating and solving the optimal
testing-resource allocation problem, the
following assumptions are made, which are valid
in most cases:

• a software program under testing is
composed of several modules, which are
developed and tested independently during
the unit-testing phase

• in the unit-testing phase, each program
module is subject to failures at random
times caused by faults remaining in the
module and the failures of the modules are
independent

• a module structure of a program under
testing is known and a transfer of control
among program modules follows a Markov
process and the exchanges of controls
among these modules are characterized
according to the rules of a Markov process;

BIULETYN INSTYTUTU SYSTEMÓW INFORMATYCZNYCH 7 69−76 (2011)

 75

the next transfer of control to be executed is
independent of the past history and depends
only on the present module

• the probability of transition from one module
to another is determined from the operational
profile of a system

• the reliability of a module-based program
depends on the architecture of the program
and the reliabilities of their component
modules

• the cost of a module function is
monotonically related to the value of the
module reliability.

Knowledge of the optimal reliability
structure of the program under testing allows the
software testing manager to rationally decide
how to use the limited testing resources
effectively in order to maximize the program
reliability and minimize the program testing
cost. On the basis of the optimal program
reliability structure the manager knows how to
allocate the specified amount of testing-resource
expenditures for each program module to
achieve both the maximal program reliability
growth and minimal cost of the program testing.

The method of determining the program
reliability structure that has been proposed was
illustrated by the simple numerical example. For
assumed module structure of a program, the
optimal program reliability structure has been
obtained as a compromise solution of the
bicriteria optimization problem (4)−(8).

6. Bibliography

[1] R.C. Cheung, ”A user-oriented software

reliability model”, IEEE Transactions
on Software Engineering, Vol. SE-6(2),
1980.

[2] D.W. Coit, ”Economic allocation of test
times for subsystem level reliability growth
testing”, IEEE Transactions on Software
Engineering, Vol 30(12), 1998.

[3] Y.S. Dai, M. Xie, K.L. Poth, B. Tang,
”Optimal testing-resource allocation
with genetic algorithm for modular software
systems”, The Journal of Systems
and Software, No. 66, 2003.

[4] K. Goseva-Popstojanova, K.S. Trivedi,
”Architecture-based approach to reliability
assessment of software systems”,
Performance Evaluation, No 45, 2001.

[5] C.Y. Huang, J.H. Lo, ”Optimal resource
allocation for cost and reliability of modular
software systems in the testing phase”,

The Journal of Systems and Software,
No. 79, 2006.

[6] W. Kuo, V.R. Prasad, ”An annotated
overview of system reliability
optimisation”, IEEE Transactions on
Software Engineering, Vol. 49, 2 (2000).

[7] Y.W. Leung, ”Dynamic resource-allocation
for software-module testing”, The Journal
of Systems and Software, Vol. 37, 2 (1997).

[8] J.D. Musa, Software – Reliability-
-Engineered Testing Practice. McGraw-
-Hill, New York, 1998.

[9] H. Ohtera, S. Yamada, ”Optimal allocation
& control problems for software-testing
resources”, IEEE Transactions on Software
Engineering, Vol. 39(2), 1990.

[10] J. Rajgopal, M. Mazumdar, ”Modular
operational test plans for inferences
on software reliability based on a Markov
model”, IEEE Transactions on Software
Engineering, Vol. 28(4), 2002.

[11] J. Stadnicki, Teoria i praktyka
rozwiązywania zadań polioptymalizacji.
WNT, 2006.

[12] S. Wolfram, The Mathematica book,
Cambridge University Press and Wolfram
Media, Inc., 1996.

[13] K. Worwa, ”Estimation of he program
testing strategy”, Postępy Cybernetyki,
Zeszyt 3−4, 1995.

[14] S.T. Yamada, I.M. Nishiwaki, ”Optimal
allocation policies for testing-resource
based on a software reliability growth
model”, International Journal of
Mathematical and Computer Modelling,
Vol. 22, 10−12 (1995).

K.Worwa, J.Stanik, Optimal Resource Allocation for Reliability of Modular Software Systems

 76

Optimalizacja alokacji nakładów w procesie wytwarzania programu

o znanej strukturze modułowej

K. WORWA, J. STANIK

W artykule przedstawiona jest metoda określania struktury niezawodnościowej programu, rozumianej jako
wektor wskaźników niezawodności jego modułów składowych. Modelem rozpatrywanego programu jest graf
przepływu sterowania, w którym prawdopodobieństwa uaktywniania poszczególnych modułów składowych
w procesie wykonywania programu wynikają z tzw. profilu operacyjnego programu, charakteryzującego
rzeczywiste środowisko jego pracy. Struktura niezawodnościowa wyznaczana jest w wyniku rozwiązania
określonego zadania programowania matematycznego. Znajomość struktury niezawodnościowej programu
umożliwia właściwe zaplanowanie nakładów czasowo-finansowych, wymaganych dla wytworzenia programu,
spełniającego założone wymagania niezawodnościowe. Zastosowanie przedstawionej metody zilustrowane
zostało przykładem liczbowym.

Słowa kluczowe: struktura modułowa programu, testowanie oprogramowania, niezawodność oprogramowania.

