
BIULETYN INSTYTUTU SYSTEMÓW INFORMATYCZNYCH 7 69−76 (2011) 

 69

 
 
Optimal Resource Allocation for Reliability of Modular Software Systems 

 
K. WORWA, J. STANIK 

kazimierz.worwa@wat.edu.pl 
 

Institute of Computer and Information Systems 
Faculty of Cybernetics, Military University of Technology 

Kaliskiego Str. 2, 00-908 Warsaw, Poland 
 
Considerable development resources are consumed during the software-testing phase. The software 
development manager has to decide how to use the testing-resources effectively in order to maximize the 
software quality and reliability. The paper discusses a management problem to achieve a reliable software 
system efficiently during the module testing stage by applying a software reliability growth model. This model 
both describes the software-error detection phenomenon and represents the relationship between the 
cumulative number of errors encountered by software testing and the time span of the testing. As testing cost 
and software reliability are both important factors in the testing-resource allocation problems an investigation 
is performed in the paper to search for the optimal solution for modular software system with the objectives of 
maximising system reliability and minimising testing cost. 
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1. Introduction 
 
It is well known that a software development 
process consists of the following four phases: 
specification (including user requirements 
definition and software functional and non-
functional requirements specification), design 
(structural design and detailed design), coding 
and testing. The reciprocal relationships between 
these phases, including phase sequence and 
development activities range, depend on 
assumed software life cycle model.  

Practically, a software testing process 
consists of several testing stages including 
module testing, integration testing, system 
testing and installation testing. During the testing 
phase, software faults can be detected and 
removed. The quality of the tests usually 
corresponds to the maturity of the software test 
process, which in turn relates to the maturity of 
the overall software development process.  
In general, most popular and commercial 
software products are complex systems 
composed of a number of modules. Typically, 
module testing is the most time-critical part of 
testing to be performed. All the testing activities 
of different modules should be completed within 
a limited time, and these activities normally 
consume approximately 40−50% of the total 
amount of software development resources [14]. 
Therefore, project managers should know how to 
allocate the specified testing-resources among all 
the modules and develop quality software with 

high reliability. During the unit-testing phase, all 
the testing activities of different modules are 
competing for the limited testing-resource, i.e. 
testing time and testing cost. Thus, a critical 
problem is how to allocate the total available 
program testing-resource among program 
modules in an optimal way. There are many 
papers that investigate this problem,  
e.g. [6] has presented an overview of the 
methods that have been developed for solving 
various reliability optimization problems 
including testing resource allocation problems; 
in paper [9] two resource allocation problems for 
software-module testing are formulated and 
solved, considering the mean number of 
remaining faults in the software modules; paper 
[7] studied a dynamic resource allocation 
strategy for software module testing; in paper 
[13] the problem of determining an optimal 
testing strategy is investigated.  

The optimal testing-resource allocation 
problem is important, but difficult in project 
planning and management. It has been studied 
extensively in the literature (see e.g. [2, 6, 7, 9, 
14]). When only limited resources are available 
during testing of a software system, it is 
important to allocate the testing resources 
efficiently, so that the maximum reliability of 
the complete system is achieved. 

Testing cost and software reliability are 
both important factors in the testing-resource 
allocation problems. This paper discusses  
a management problem to achieve a reliable 
software system efficiently during module 
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testing stage by means of formulating and 
solving the testing-resource allocation 
optimization problem with the objectives of 
maximizing program reliability and minimizing 
the program testing cost. Section 2 introduces 
a formal model of a program testing process. 
This model considers the effect of testing- 
-resources on the software reliability growth. 
Section 3 uses the program testing model to 
derive optimal allocation of the testing-resources 
for module testing. Finally, section 4 presents a 
numerical example to illustrate the method of 
determining an optimal program reliability 
structure. 
 
2. Description of the Program 

Testing Process 
 
We assume that the program under the testing 
process consists of several modules. Although 
there is no universally accepted definition of 
modularization, most programmers would 
conceive a module as a fragment of a program 
that carries out a specific function and may be 
used alone or combined with other modules of 
the same program. This usually implies that a 
module can be designed, implemented, and 
tested independently. Since a large-scale 
program always involves a substantial number of 
programmers working concurrently, a large 
program can be viewed as a collection of 
logically independent modules. A module is 
usually defined to perform a particular function. 
Let M mean a set of module numbers of the 
program under the testing, 

},...,,...,3,2,1{ Mm=M . Let us define the 
reliability of a module as the probability that the 
module performs the function correctly, i.e., the 
module produces the correct output and transfers 
control to the next module correctly. When a set 
of user input is supplied to the program,  
a sequence of modules will be executed. The 
reliability of the output will depend on the 
sequence of modules executed and the reliability 
of each individual module. We first assume that 
the reliabilities of the modules are independent. 
This means that errors will not compensate each 
other, i.e., an incorrect output from a module 
will not be corrected later by subsequent 
modules. Since errors do not compensate each 
other, the result of the execution of the program 
is correct, if and only if the correct sequence of 
modules is executed and in every instance of 
module execution the module produces the 
correct result. The reliability of a module, in 
general, is a function of many factors, and the 

study of the reliability function of a module is 
beyond the scope of this paper. However, if no 
modification is made on the modules and the 
user environment does not change, the reliability 
function of a module should remain invariant. 
Let mR  stand for the m-th module reliability 
function. We will assume that the module 
reliability functions can be determined and the 
following vector ),...,,...,,,( 321 Mm RRRRR=R  
will be called a program reliability structure. 

We next assume that the transfer of control 
among program modules is a Markov process. 
This implies that the next module to be executed 
will depend probabilistically on the present 
module only and is independent of the past 
history. It is noteworthy that this assumption 
may not be valid for all types of programs. 
Although the assumption of Markovian behavior 
of control flow at the instruction level is 
questionable, experiments performed by 
researchers in memory management and 
scheduling have shown that this assumption may 
be valid at the macroscopic level, i.e. module 
level for a large number of programs [4, 8].  

Let us represent the control structure of the 
program by a directed graph where every node i 
represents a program module and a directed 
branch (i, j) represents a possible transfer of 
control from i to j. To every directed branch (i, j) 
we will attach a probability ijp  as the probability 
that the transition (i, j) will be taken when 
control is at node i. If 0=ijp , the branch (i, j) 
does not exist. This transition probability 
represents the branching characteristics of the 
decision point at the exit point of the module i. 
Without loss of generality, let us assume that the 
program graph has a single entry node 1 and  
a single exit node M. Let us consider every node 
in the graph as a state of the Markov process, 
with the initial state corresponding to the entry 
node of the program graph. Two states C and F 
are added as the terminal states, representing the 
state of correct output and failure, respectively. 
For every node i, a directed branch (i, F) is 
created with transition probability iR−1  
representing the occurrence of an error in the 
execution of module i. Since errors do not 
compensate each other, a failure in i will 
ultimately lead to an incorrect program output, 
regardless of the sequence of modules executed 
afterwards. This phenomenon is represented by 
the transition to the terminal state F. The original 
transition probability between i and j is modified 
into iji pR ⋅ , which represents the probability that 
the execution of module i produces the correct 
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result and control is transferred to module i. For 
the exit note M, a directed branch (M, C) is 
created with a transition probability MR  to 
represent correct termination at the exit node.  

Assuming that the testing process is 
modelled by the above-described Markov 
process let )(RP  mean the transition matrix of 
this process. 
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According to earlier assumptions the matrix 
)(RP  has the form of (1). As we mentioned 

earlier vector R is the so-called program 
reliability structure. The first two rows and two 
columns of the matrix )(RP  represent absorbing 
states C, F of the Markov process. 

The reliability of the program is, therefore, 
the probability of reaching the terminal state C 
from the initial state 1 of the Markov process. 
We can express the program reliability as  
a function of the reliability of the modules and 
frequency distribution of utilization of these 
modules. Using this approach, the reliability of 
the program is a function of both the 
deterministic properties of the structure of the 
program and the stochastic properties of the 
module failure behaviour and the utilization of 
these components by the user. Ideally, we would 
like a reliability model where the program 
structure, in terms of its modules, can be easily 
constructed, where the component reliabilities 
can be independently determined, and where a 
simple user profile can be measured easily by 
monitoring the dynamic behaviour of the 
program. 

 
3. Optimization of the Testing-

Resource Allocation Problem 
 
The Markov reliability model uses the program 
flow graph to represent the structure of the 
system so that the structure can be easily 
obtained by analyzing the code. It uses 

functional modules as the basic components so 
that the component reliabilities are reasonably 
independent. It uses the branching characteristics 
among modules as the user profile so that they 
can be easily measured in the operational 
environment. It is noteworthy that similar 
structural models are often proposed in the 
literature, see e.g.[1, 3, 5, 8−10, 13]. The overall 
software reliability can be expressed in terms of 
individual module reliabilities and other 
parameters, such as visit statistics to each 
module.  

Let P(R) be the matrix of order M obtained 
from )(RP  by deleting all the rows and columns 
correspond to the absorbing states C and F. 
According to earlier remarks reliability of the 
program is equal to the probability of reaching 
by the Markov process the terminal state C from 
the initial state 1. Using a standard method of 
computing absorption probabilities in the 
Markov process reliability of the program can be 
computed as follows [1] 

MM RSR )()( 1 RR = ,                     (2) 
where M1S  is an element of the matrix 

1))(( −−= RPIS  that lies on the intersection of 
the first row and the M-th column, I is the 
identity matrix of order M and MR  is the 
reliability function of the M-th module. 
It should be mentioned that this method of 
computing the program reliability coefficient as 
given in (1) can be quite inconvenient without 
the use of software that can perform the requisite 
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symbolic linear algebra, although packages such 
as Mathematica [12]. 

The cost of a module is associated with  
a number of parameters such as the design and 
development time, and testing time, and can be 
assumed to be monotonically related to the value 
of module reliability. The module cost –
reliability relation can be linear, exponential, and 
even random while maintaining the monotonic 
property. We assume that the cost of the 
program consisting of M components, denoted 
by )(RK  can be given by function of the form 

∑
=

=
M

m
mm RKK

1
)()(R                    (3) 

where )( mmm RfK = , M∈m ,  is the cost of the 
m-th module, if its reliability is mR ; is 
reasonable to assume that the cost function 

)( mmm RfK =  depends monotonically on 
reliability mR .  
The management problem to achieve  
a reliable program efficiently during the module 
testing stage in the software development 
process can be formulated as an optimization 
problem with two objectives as follows: 

maximize    MM RSR )()( 1 RR = ,          (4) 

minimize    ∑
=

=
M

m
mm RKK

1
)()(R ,          (5) 

subject to constraints 
min1 )()( RRSR MM ≥= RR ,           (6) 

max
1

)()( KRKK
M

m
mm ≤= ∑

=
R ,          (7) 

),...,,...,,,( 321 Mm RRRRR=R , 
1R0 m ≤≤ , M∈m ,                (8) 

where minR  is a minimal feasible value of  
a program reliability and maxK  is a maximal 
feasible value of a program testing cost. 

The testing-resource allocation problem  
(4)−(8) is a bicriteria optimization problem with 
nonlinear objective functions and nonlinear 
constraints. A solution of this problem can be 
obtained by using well known methodology of 
solving multiple optimization problems [11]. 
According to that methodology as a solution of 
the problem (4)−(8) we can determine: 
• a dominate solution set 
• a nondominate solution set 
• a compromise solution set. 
Taking into account that values of objective 
functions )(RR and )(RK  are inverse (in sense 
that if a value )(RR  is increased, the value 

)(RR  is increased, too) it is reasonable to expect 

that the dominate solution set will empty.  
In such a situation a practically recommended 
approach is to determine a nondominated 
solution set. If this set is very numerous we can 
narrow it down by determining a so-called 
compromise solution [11]. The program 
reliability structure *R  that to be obtained after 
the solving the optimization problem (4)−(8) 
will both maximize the value of the program 
reliability function )(RR  and minimize the 
value of the program testing cost )(RK . 
 
4. Numerical Example 
 
The methodology of determination of the 
program reliability structure that has been 
presented can be illustrated by the following 
numerical example. Let Fig. 1 be the directed 
graph representing the control structure of  
a program with five modules where 1 represents 
the input module and 5 is the output module. 
The set of a program component modules is 

}5,4,3,2,1{     =M  and the program reliability 
structure is a vector ),,,,( 54321 RRRRR=R . 
 
 
 
 
 
 
 
 

 
 
 

Fig. 1. A program control graph 
 
Table 1 presents branching probabilities ijp  
between the modules i and j. 
 

Table 1. Values of branching probabilities   
between the modules i and j 

 
p11 = 0 p12 = 0.6 p13 = 0.3 p14 = 0 p15 = 0.1 
p21 = 0 p22 = 0 p23 = 0 p24 = 1 p25 = 0  
p31 = 0 p32 = 0 p33 = 0 p34 = 1 p35 = 0  
p41 = 0.3 p42 = 0.2 p43 = 0.4 p44 = 0.1 p45 = 0 

Using (1) the value of the program reliability 
function can be determined as 

515 )()( RSR RR = , where quantity 15S  can easily 
be computed by means of software packages 
Mathematica [12] as follows 

1

2 3 

4

5 
p12 

p15 

p13 

p41 

p42 

p24 

p44 

p43 
p34 



BIULETYN INSTYTUTU SYSTEMÓW INFORMATYCZNYCH 7 69−76 (2011) 

 73

)(
)(

15 R
R

M
LS = ,                              (9) 
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where mR  is the m-th module reliability 
function, }5,4,3,2,1{     =∈ Mm . 

Let the cost of the m-th module 
function )( mmm RfK = , M∈m ,  is of the form 

}5,4,3,2,1{
)(

               =∈
+=

Mm
eKSRK mm R

mmmm
βα , (10) 

where: 
KSm – a constant component of the m-th module 
testing cost, 
αm, βm – shape coefficients of testing cost function 
of the m-th module; their values depend on module 
complexity, development technology, programmers 
experience, etc. 
Let values of parameters KSm, αm, βm, Rmin  
and Kmax  be as in Table 2. 
 

Table 2. Values of parameters KSi, αi , βi, Rmin 
 and Kmax 

 
m 1 2 3 4 5

KSm 1000,0 400,0 1500,0 2500,0 900,0
αm 50,0 35,0 25,0 30,0 40,0
βm 5,0 2,0 8,0 10,0 4,0

Rmin 0,8 
Kmax 160 000,0 

 
For the program control graph from Fig. 1 

and parameter vales in Table 1 we will solve the 
bicriterial optimization problem (4)−(8).  
A feasible solution set for this problem is a set of 
module reliability structure vectors 

),,,,( 54321 RRRRR=R .  
If we assume that ]00.1,95.0[  ∈mR , 

}5,4,3,2,1{     ∈m , a cardinality number of this set 
is 65=7776. It is easy to check that the dominated 
solution set of the problem (4)−(8) is empty (it is 
because of objective functions )(RR  and )(RK  
are inverse in sense their values). In that case 
practically recommended approach is to 
determine a nondominated solution set. The 
nondominated solution set of the bicriterial 
optimization problem (4)−(8) is plotted in Fig.2. 
Every point among points that are situated on the 
shadow contour is a nondominated solution of 
the bicriterial optimization problem (4)−(8). In 

order to narrow down this a nondominated 
solution set we will determine a compromise 
solution of this problem, i.e. such a solution 
belongs to the nondominated solution set that is 
nearest (in the sense of Euclidean distance) to 
the so-called ideal point [11]. For this reason 
both objective functions )(RR  and )(RK  
determined by (6) and (7), respectively, will be 
normalized by means of the following formulae: 

)()(
)()(

minmax

min
RR

RRR
KK

KK
−

−=)K( ,           (11) 

)()(
)()(

minmax

min
RR

RRR
RR

RR
−

−=)R( ,           (12) 

where:  
)(min)(min RR KK = ,  )()(min RR RR min =  

(13) 

)(Kmax)(K max RR = ,  )()(max RR RR max = , 

(14) 

where R is a set of all feasible program 
reliability structure, i.e. 
R =    ,10:),,,,({ 54321 ≤≤= mRRRRRRR  

}    }5,4,3,2,1(=∈Mm . 
As a result of the normalization (10)−(11) both 
normalized objective functions )K(R  and )R(R  
have values belong to range [0, 1]. 
It is easy to notice that in the example that is 

considered the ideal point  ))(R ),(K( ** RR  is of 

the form of )1,0(  ))(R ),(K( ** =RR . 
Table 2 presents the results of determination  
of the optimisation problem (3)−(7).  
The row that corresponds to the vector  

)00.1,00.1,95.0,00.1,00.1(*     =R  is the 
compromise solution of this problem, i.e. such  
a vector that is nearest to the ideal point (0, 1), 
where a distance function 1)] (0, ),R( ),K(d[( RR  
is of the form of 

22 1]-)R()]K(                               

1)] (0, ),R( ),K(d[(

RR

RR

[[ +=

=
. 

                  (15) 
It is easy to notice that the vector 

)00.1,00.1,95.0,00.1,00.1(*     =R  complies with 
the following condition  

1)] (0, )),R( ),K(d[(                              

1)] (0, ),R( ),K(d[(

RR

RR

min

**

=

=
 

(16) 
 

R∈RR∈R

R∈R R∈R

R∈R 
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The values of the objective functions )(RR   
and )(RK  for the compromise solution 

)00.1,00.1,95.0,00.1,00.1(*     =R   
are R(R*) =  0,8711 and K(R*) = 158 481,43. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The nondominated solution set of the optimization problem (4)−(8) 
 
 
 
 

Table 2. The compromise solution of the optimization problem (4)−(8) 
 

R1 R2 R3 R4 R5 )R(R  )K(R  1)] (0, ),R( ),K(d[( RR  
1,00 1,00 0,99 0,99 0,99 0,5888 0,77 0,876889 
1,00 1,00 0,99 0,99 1,00 0,5981 0,78 0,874058 
1,00 1,00 0,99 1,00 0,95 0,7705 0,88 0,909792 
1,00 1,00 0,99 1,00 0,96 0,7821 0,88 0,908320 
1,00 1,00 0,99 1,00 0,97 0,7936 0,88 0,907053 
1,00 1,00 0,99 1,00 0,98 0,8052 0,88 0,905995 
1,00 1,00 0,99 1,00 0,99 0,8168 0,89 0,905147 
1,00 1,00 0,99 1,00 1,00 0,8284 0,89 0,904515 
1,00 1,00 1,00 0,95 0,95 0,2088 0,51 0,942643 
1,00 1,00 1,00 0,95 0,96 0,2145 0,51 0,938661 
1,00 1,00 1,00 0,95 0,97 0,2201 0,52 0,934730 
1,00 1,00 1,00 0,95 0,98 0,2258 0,52 0,930854 
1,00 1,00 1,00 0,95 0,99 0,2315 0,52 0,927034 
1,00 1,00 1,00 0,95 1,00 0,2372 0,52 0,923273 
1,00 1,00 1,00 0,96 0,95 0,2720 0,59 0,939384 

 
 
5. Conclusions 
 
This paper proposes a method of determining the 
optimal program reliability structure for the 
purpose of the program testing stage realization. 
The optimal program reliability structure that is 
to be obtained after solving the bicriteria 
optimization problem (4)−(8) both maximizes 
the value of the program reliability function 

)(RR  and minimizes the value of the program 
testing cost )(RK .  

For formulating and solving the optimal 
testing-resource allocation problem, the 
following assumptions are made, which are valid 
in most cases: 

• a software program under testing is 
composed of several modules, which are 
developed and tested independently during 
the unit-testing phase 

• in the unit-testing phase, each program 
module is subject to failures at random 
times caused by faults remaining in the 
module and the failures of the modules are 
independent 

• a module structure of a program under 
testing is known and a transfer of control 
among program modules follows a Markov 
process and the exchanges of controls 
among these modules are characterized 
according to the rules of a Markov process; 
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the next transfer of control to be executed is 
independent of the past history and depends 
only on the present module 

• the probability of transition from one module 
to another is determined from the operational 
profile of a system 

• the reliability of a module-based program 
depends on the architecture of the program 
and the reliabilities of their component 
modules 

• the cost of a module function is 
monotonically related to the value of the 
module reliability. 

Knowledge of the optimal reliability 
structure of the program under testing allows the 
software testing manager to rationally decide 
how to use the limited testing resources 
effectively in order to maximize the program 
reliability and minimize the program testing 
cost. On the basis of the optimal program 
reliability structure the manager knows how to 
allocate the specified amount of testing-resource 
expenditures for each program module to 
achieve both the maximal program reliability 
growth and minimal cost of the program testing. 

The method of determining the program 
reliability structure that has been proposed was 
illustrated by the simple numerical example. For 
assumed module structure of a program, the 
optimal program reliability structure has been 
obtained as a compromise solution of the 
bicriteria optimization problem (4)−(8). 
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Optimalizacja alokacji nakładów w procesie wytwarzania programu 

o znanej strukturze modułowej 
 

K. WORWA, J. STANIK 
 
W artykule przedstawiona jest metoda określania struktury niezawodnościowej programu, rozumianej jako 
wektor wskaźników niezawodności jego modułów składowych. Modelem rozpatrywanego programu jest graf 
przepływu sterowania, w którym prawdopodobieństwa uaktywniania poszczególnych modułów składowych 
w procesie wykonywania programu wynikają z tzw. profilu operacyjnego programu, charakteryzującego 
rzeczywiste środowisko jego pracy. Struktura niezawodnościowa wyznaczana jest w wyniku rozwiązania 
określonego zadania programowania matematycznego. Znajomość struktury niezawodnościowej programu 
umożliwia właściwe zaplanowanie nakładów czasowo-finansowych, wymaganych dla wytworzenia programu, 
spełniającego założone wymagania niezawodnościowe. Zastosowanie przedstawionej metody zilustrowane 
zostało przykładem liczbowym. 

 
Słowa kluczowe: struktura modułowa programu, testowanie oprogramowania, niezawodność oprogramowania. 
 


