
BIULETYN INSTYTUTU SYSTEMÓW INFORMATYCZNYCH 7 61−68 (2011)

 61

The optimization of SQL queries by means of drawing up query diagrams

K. WITAN

kwitan@wat.edu.pl

Faculty of Cybernetics, Military University of Technology
Kaliskiego Str. 2, 00-908 Warsaw, Poland

A poorly performing database application not only costs users time, but also has an impact on other
applications running on the same computer or the same network. The best method to manage with this problem
is performing SQL tuning. There are two basic issues to focus on during tuning: how to find and interpret
the execution plan of an SQL statement and how to change a SQL query to get a specific alternate execution
plan. But most important is how to find the optimal execution plan for the query to use. This article describes
a timesaving method developed for finding the optimum execution plan – rapidly and systematically –
regardless of the complexity of the SQL query or the database platform being used. It explains how to
understand and control SQL execution plan and how to diagram SQL queries to deduce the best execution plan
for a query.

Keywords: query optimization, SQL language, relational database.

1. The purpose of optimization

As the development of SQL-based databases
progresses, bigger stress is being put on
the output of queries created in a given language.
The interest in this particular issue is a natural
consequence of longstanding researches, which
concern the output of databases and obtained
results as well as observations resulting from
the programmatic experience of numerous
specialists within the scope of a given field.
It has been an obvious fact that it is no longer
sufficient to just write a programmatic command
that would return expected results. Also
important is a correct construction resulting not
only from the syntax established for a query, but
also from other various factors (stemming from
the data structure and data handling rules) that
may influence functional efficiency. Owing to
the conclusions gathered during the
aforementioned researches, the database
producers began to implement mechanisms into
their databases that provide the output
measurement as well as tools that enable to
determine execution plans, correcting the
structure of commands written by programmers
[2], [3], [6]. However, the offered tools are not
always reliable solutions, hence they cannot be
regarded as providing sufficient support for the
SQL language code authors. For this reason,
many programmers created their own informal
methods that are aimed at the verification of the

actual output as well as the methods of creating
optimal plans for query execution. Nonetheless,
transforming the SQL optimization into
a science requires to elaborate a set of uniform
rules and notations. Among a number of
unofficial methodologies, the one worth
mentioning is the one proposed by Dan Tow
and presented in the book, titled ”SQL Tuning”.
This methodology of drawing up query diagrams
is based upon the The article elaboration of
graphs that contain information relevant in terms
of output estimation [1]. The methodology also
shapes the base for subsequent actions leading to
the determination of a proper query form. Next
chapters of the article present an algorithm
(in the form of steps) elaborated by onself –
based on conceptions of methodology mentioned
above – which enables optimization of the
query built within one's capacity for publication
needs.

2. Graphical representation

The graphical part of the methodology presented
in the form of directed graph contains standard
elements, that is nodes, which represent tables
falling under the query. The tables are
interconnected by joins ended with arrows that
determine the direction of superiority relation
resulting from connections between tables. In
addition, each node has assigned numerical
values, which depict the filtering indexes,

mailto:kwitan@wat.edu.pl�

K. Witan, The optimization of SQL queries by means of drawing up query diagrams

 62

and also the join indexes calculated for each
table, thus taken into consideration.

2.1. Nodes

For the purpose of maintaining clear graphical
form, the whole names of tables are replaced by
aliases of given tables. Aliases may be selected
randomly, it is important, however, that those
name abbreviations are unique and prevent
the ambiguity phenomenon.

2.2. Joins

The arrow-ended side of join indicates
the superior table in the relation of tables
presented as nodes at the graph. Thereby, there
are two unique values at the given end within
two connected nodes representing database
tables, which are marked out by the query.

According to the convention agreed in
the methodology, diagrams should always be
constructed so that it is possible to place
a downward arrow. In other words, the main
assumption of this rule is that superior tables are
located at the lower level than linked subordinate
tables1.

2.3. Underlined numerical values

The underlined numerical values are placed next
to each node and they reflect the filtering index,
that is the number of table rows that meet
the filtering condition stated in the query [1],
[2], [5], [6], [7]. It is calculated upon the data
collected from the database, according to the
following relation:
Number of rows meeting the filtering condition/
number of all rows
Sometimes, no filtering indicators are specified
in the query to given tables or to certain tables
from all of them. In such a scenario, the filtering
index takes the value of 1.0, because 100 percent
of rows meet the criteria of the (non-existing)
filter.

2.4. Non-underlined numerical values

Non-underlined numerical values are located
next to each node and they determine the join
index, corresponding to the average number of
rows found in a table represented by the given
node in relation to the adequate rows included
in the table represented by the node connected

1 Superior tables are also defined as detail tables.

with the previously mentioned node2

[1], [2], [4], [5], [6], [7]. The join index takes the
value calculated upon the following relation:
The number of rows meeting the join condition
in a given table/The number of all rows in
 a given table.

3. Data source

The primary data source, which are necessary to
calculate indexes are the queries directed to
a database. According to these assumptions,
the information, which are needed for each table
and which should be collected by means of
a developing tool, concern: the number of all
rows, the number of rows meeting the filtering
conditions and rows, which are coherent with
a join condition.

4. Elaboration of the query diagrams

The process of diagram preparation may be
divided into following stages:
1. A randomly selected alias for the table

included within the FROM clause should be
located in the middle of the area destined
for the graphical representation of
the query. From this point onwards,
the table will be regarded as an object of
interest.

2. Then it is necessary to establish conditions
of joins with other tables determined for
the main key of the table selected in
the previous point. This enables to indicate
the tables subordinate to tables of interest
[5]. According to previously presented
assumptions, the tables identified as
subordinate are located above the tables,
which are superior to them while
the connection between tables is ended with
a downward arrow at the side of
the superior table.

3. The following action is the establishing of
joins leading from the foreign key of
the table of interest to the main keys of
the remaining tables within the query. Thus,
all found tables should be located at
the lower level than the table of interest, as
they are in a superior relation to this table.
Such a join should be marked by an arrow

2 Join indexes are divided into superior table join indexes
and detail table join indexes, depending on the join side,
where the value-calculated node is located. Superior table
join indexes usually take values no bigger than 1, whereas
the values for detail tables must be nonnegative and never
greater than 1.

BIULETYN INSTYTUTU SYSTEMÓW INFORMATYCZNYCH 7 61−68 (2011)

 63

directed from the table of interest to
the second table located at the lower level.

4. Once all the above steps are completed,
the next table, included in the query, should
be selected and made a new object of
interest, for which the whole above-
described procedure should be repeated
(steps described in points 2-3). This
procedure should be continued until all
aliases of tables listed in the FROM clause
are put into the diagram and until all joins
used by the query are taken into
consideration.

5. The subsequent stage after all nodes
and joins are put into a diagram is
the definition of values for filtering indexes
and join indexes, which are determined
upon real values stored in a database.

5. Elaboration of effective diagram-

based plans for executing queries

Once the query is already illustrated by
the graph including all relevant information, it is
possible to move to the subsequent stage, which,
according to the described methodology, is
the determination of the optimal plan of query
execution.

The effective execution plan should include
the following features [1]:
• the cost of executing the plan is

proportional to the number of rows returned
as a result of the query execution

• it is not necessary to modify the plan as
the table volume increases

• the query execution according to the plan
does not require extensive memory space,
characteristic for hash functions and sorting
functions

• the plan is independent from data
distribution and it may be utilized for
different instances of the database, which
function under the supervision of the same
application.
There is a number of rules that must be

strictly followed as the plan is elaborated.
During the initial stage it is necessary to
remember that the access to the first table should
be based upon the application of the selective
index. In turn, the reference to the following
table must be executed by utilization of a nested
loop based upon the join key. The key indicates
the table previously read by the database.
The final factor, which renders the plan effective
is the sequence of executed joins. Firstly,
the joins with nodes located at the lower level

than the analyzed node should be executed
through primary keys. Then, links based upon no
primary keys should be established with nodes at
the upper levels.

Upon the above specified rules,
the following sequence of operations may be
distinguished, which enable to elaborate
the optimal plan for query execution:
1. Choose the table with the lowest filtering

index.
2. For the table indicated in the previous point

make a join with the related table at
the lower level by utilizing a nested loop.
The decisive factor for the table selection is
the lowest filtering index among the tables
at the given level, related with the focus
table. The graph shifting should be
continued to the lowest available level.
The aim of this rule is to obtain conditions,
in which full, single-valued indexes of
primary keys are utilized.

3. If downward shifting is not possible, it is
allowed to utilize the nested loops against
the tables located at the levels higher than
the analyzed table. In such case, the joins
are based upon the full indexes of foreign
keys.

6. Execution of complex SQL query

Found below is the example of SQL query,
subject to optimization in accordance with
methodology of drawing up query diagrams.

SELECT C.Phone_Number, C.Honorific,
C.First_Name, C.Adress_Id,A.Adress_Id,
C.Last_Name, C.Suffix, A.Street_Addr_Line1,
A.Street_Addr_Line2, A.State_Abbreviation,
A.City_Name, A.Zip_Code, OD.Item_Count,
OD.Deffered_Ship_Date, P.Prod_Description,
OT.Text, S.Shipment_Date, O.Number
FROM Orders O, Order_Details OD, Products
P, Customers C, Shipment S, Addresses A,
Code_Translations OT
WHERE
UPPER (C.Last_Name) LIKE ‘Kowal%’
AND OD.Order_Id = O.Order_Id
AND O. Customer_Id = C.Customer_Id AND
OD.Product_Id = P.Product_Id (+)
AND OD.Shipment_Id = S.Shipment_Id (+)
AND S.Address_Id = A.Address_Id (+)
AND O.Status_Code = OT.Code
AND O.Order_Date > SYSDATE– 366
ORDER BY C.Customer_Id, O.Order_Id
DESC, S.Shipment_Id, OD.Order_Detail_Id;

K. Witan, The optimization of SQL queries by means of drawing up query diagrams

 64

In order to streamline the analysis process,
it is possible to create the list of tables and their
primary keys as well as to elaborate
the descriptions of relations, which indicate
the character of tables within particular links.

Tab. 1. The list reflecting the character of tables
in specific relations

Relation The field

constituting
the base of

relation
(primary key

of the
superior
table)

The character of the table
in relation

Superior Subordinate

OD.Order_Id =
O.Order_Id

Order_Id Orders O Order_Details
OD

O.
Customer_Id =
.Customer_Id

Customer_Id Customers
C

Orders O

OD.Product_Id
= P.Product_Id
(+)

Product_Id Products P Order_Details
OD

OD.Shipment_
Id =
S.Shipment_Id
(+)

Shipment_Id Shipment S Order_Details
OD

S.Address_Id =
A.Address_Id
(+)

Address_Id Addresses
A

Shipment S

O.Status_Code
= OT.Code

Code Code_Trans
lations OT

Orders O

The following stages constitute the
procedure for drawing the diagram:
1. Selection of the table of interest – O

(Fig. 1).

Fig. 1. Table of interest O

2. Indication of the tables subordinate to
the table of interest, that is based upon its
primary key (Fig. 2).

Fig. 2. OD Table subordinate to the O Table

3. Determination of tables superior to tables of
interest (Fig. 3).

Fig. 3. OD table of interest subordinate to the O Table

4. Determination of a new table of interest –

OD
5. Indication of tables superior to the table of

interest OD (Fig. 4).

Fig. 4. S, P, O tables superior to the OD Table

BIULETYN INSTYTUTU SYSTEMÓW INFORMATYCZNYCH 7 61−68 (2011)

 65

6. Verification of the existence of tables
subordinate to OD – no tables meeting
the requirement.

7. Determination of the subsequent table of
interest S

8. Determination of tables superior to S
(Fig. 5).

Fig. 5. A table superior to the S Table

9. Verification if all the links between tables

included in the query are presented by
the diagram – all tables are presented at
the diagram.

10. Verification if there are any relations that
were omitted in the graphical presentation
of the query – no omitted relations found.

11. Determination of the data demand based
upon the query. Collection of information
from the database, which are necessary to
calculate the filtering and join indexes:

Z1: SELECT COUNT(*) W1 FROM Customers
WHERE UPPER (C.Last_Name) LIKE
‘Kowal%’;
W1: 5

Z2: SELECT COUNT(*) W2 FROM
Customers;
W2: 5000000

Z3: SELECT COUNT(*) W3 FROM Orders
WHERE O.Order_Date > SYSDATE– 366;
W3: 1200000

Z4: SELECT COUNT(*) W4 FROM Orders;
W4: 4000000

Z5: SELECT COUNT(*) W5 FROM Orders O,
Customers C WHERE
O.Customers_Id=C.Customers_Id;
W5: 4000000

Z6: SELECT COUNT(*) W6 FROM
Orders_Details;
W6: 12000000

Z7: SELECT COUNT(*) W7 FROM Orders O,
Orders_Details OD WHERE
OD.Order_Id=O.Order_Id;
W7: 12000000
Z8: SELECT COUNT(*) W8 FROM
Code_Translations;
W8: 4

Z9: SELECT COUNT(*) W5 FROM Orders O,
Code_Translations OT
WHERE O.Status_Code=OT.Code;
W9: 4000000

12. Calculation of the filtering indexes for

tables Fig. 6 – Filtering index of tables):

Customers C – W1/W2 = 5/50000 = 0,00001

Orders O – W3/W4 = 1200000/4000000 = 0,3

No selectivity conditions have been determined
for the remaining tables, thus their filtering
index equals 1.

Fig. 6. Filtering index of tables

13. Calculation of join indexes for tables (Fig. 7

/ Fig. 8):

(OD=O)/O – W7/W4 = 12000000/4000000 = 3

(OD=O)/OD – W7/W6 = 1

(O=C)/C – W5/W2 = 4000000/5000000 = 0,8

(O=C)/O – W5/W4 = 4000000/4000000 = 1

(O=OT)/OT – W9/W8 = 4000000/4 = 1000000
w przybliżeniu 1M

K. Witan, The optimization of SQL queries by means of drawing up query diagrams

 66

(O=OT)/O – W9/W4 = 4000000/4000000 = 1

The joins, which concern tables A, P, S and
force artificial completion of missing values are
omitted in our considerations.

Fig. 7. Join index of tables

Fig. 8. A list of filtering and join indexes for tables

14. Once the graphical reflection of the query is
completed, it is necessary to determine
the node having the lowest filtering index
value, in accordance with the accepted
rules. In this case, it is node C, since its
calculated value equals 0.00001.

15. It is not possible to move from C node to
the lower level, it is necessary to change
the direction of the analysis, that is
transition to the node at the higher level,
which is related with C. This formed node
is referred to as O (first join).

16. It is possible to shift from the O node to
the lower level, that is to the OT node
(second join). This node is not related with
any other nodes at the lower levels, which
means that it is necessary to return to the
higher level to the O node.

17. In view of the O node, all lower level
nodes, which are available for it through
links have already been analyzed. Thus, the
only possible way is the transition to the
upper level to the OD node connected with
the O node (third join).

18. In this way, four tables have been joined by
three joins: C with O, O with OT, OT with
OD.

19. The remaining joins are executed in
the context of tables located below the OD
node and they are not filtered within
the query. Thus, the sequence of joining
those tables is random. A similar rule
applies to the A table. The joins with
a given table may be executed at the
random stage of the plan, once the joins
with table S are made.

20. Therefore, the optimal sequence of
executing the joins [4] is determined by
the path leading through the following
nodes: C, O, OT, OD, then passing in the
random order through S, P and finishing at
the A node connected with the S node.
Based upon this assumption it is possible to
elaborate several equally optimal
combinations. One of such combinations is
a path of the following sequence: C, O, OT,
OD, P, S, A (Fig.9).

Fig. 9. The path determining the optimal sequence of
executing joins

21. For such a procedure it is important to

elaborate a plan of efficient execution,
where the key aspect is the determined
sequence of joins. At this base it is possible
to specify the method of application of
nested loops, which operate on indexes. In
case of an initial table C, the identified
index is included within the filtering
condition. In turn, the indexes of
the remaining tables are the join key

BIULETYN INSTYTUTU SYSTEMÓW INFORMATYCZNYCH 7 61−68 (2011)

 67

indexes. A detailed plan of the query
execution takes the following shape:
• the initial step is the reference to table

Customers C using the Last Name index.
The query must be modified so that it
enables the full access to the index
and ensures its full application

• the following step is to make a nested
loop against the Orders O table, based
upon the index of the Customer_Id
foreign key

• the following join of the nested loop
is executed with respect to
Code_Translations OT and based upon
the index of its primary key – Code

• the joining of the nested loops with the
Order_Details table is executed upon the
base of the Order_Id foreign key index

• the following step is the implementation
of the nested loop join against the table
Products P. In a given case the index of
the Product_Id primary key is used

• during the next stage, an outer join of
nested loops is executed, this time with
the Shipments table and by using the
index of the Shipment_Id primary key

• the last outer join of nested loops applies
to the Addresses table and it refers to the
index of the index of the Address_Id
primary key

• the procedure ends with the sorting of
query results.

Each attempt to execute the query, which
permits the omission of specified indexes or
avoidance of nested loops will not be an optimal
execution plan.

7. Benefits of optimization

The improvement of queries is one of the safest
methods of modifying applications. Moreover,
unlike other methods of optimization, which
could generate extra costs (e.g. adding indexes
increases the necessary disk space), the method
of drawing up query diagrams bears only minor
risk of complications that might disturb
the operation of a database. Thereby, the benefits
of increased efficiency of SQL code optimized
by way of the presented method are considerable
and the risk of potential complications is little,
which makes it an efficient tool that may be
utilized in numerous SQL-based database
applications.

8. Bibliography

[1] D. Tow, SQL Tuning, O’Reilly Media, Inc.,

United States of America, 2003.
[2] B. Schwartz, P. Zaitsev, V. Tkachenko,

J.D. Zawodny, High Performance MySQL,
O’Reilly Media, Inc., United States of
America, June 2008.

[3] W. Dudek, Bazy danych SQL. Teoria
i praktyka, HELION, 11/2006.

[4] K. Loney, Oracle Database 11g. Complete
Reference, The McGraw-Hill Companies,
Inc, 2009.

[5] J. Price, Oracle Database 11g SQL,
The McGraw-Hill Companies, Inc, 6/2008.

[6] E. Whalen, M. Schroeter, Oracle.
Optymalizacja wydajności, HELION, 2003.

[7] R. Vieira, Beginning SQL Server 2005
Programming, Wiley Publishing, Inc,
Canada, 2006.

K. Witan, The optimization of SQL queries by means of drawing up query diagrams

 68

Optymalizacja zapytań SQL metodą sporządzania diagramów zapytań

K. WITAN

Niewłaściwie skonstruowane aplikacje bazodanowe nie tylko wymagają poświęcenia nadmiernej ilości czasu
na ich obsługę, lecz mają także wpływ na inne aplikacje funkcjonujące na tym samym komputerze, lub
w tej samej sieci. Najlepszą metodą pozwalającą na rozwiązanie powyższego problemu, jest przeprowadzenie
optymalizacji zapytań. Istnieją dwie podstawowe kwestie na których należy się skoncentrować w trakcie
optymalizacji: jak znaleźć i zinterpretować plan wykonania dla zapytania SQL, oraz jak zmodyfikować
zapytanie SQL, aby uzyskać określony alternatywny plan wykonania. Jednak najistotniejsze jest jak
znaleźć optymalny plan wykonania dla konkretnego zapytania. Bieżący artykuł opisuje metodę, charakteryzującą
się niską czasochłonnością, opracowaną w celu wyznaczenia optymalnego planu wykonania – szybko
i systematycznie – niezależnie od poziomu złożoności zapytania SQL, lub rodzaju użytej platformy
bazodanowej. Wyjaśnia on jak zrozumieć i kontrolować plan wykonania SQL, a także jak opracować diagram
zapytania, umożliwiający wybór najlepszego planu wykonania dla zapytania.

Słowa kluczowe: optymalizacja zapytań, język SQL, relacyjne bazy danych.

