
BIULETYN INSTYTUTU SYSTEMÓW INFORMATYCZNYCH 7 31−38 (2011)

 31

Job Scheduling in Homogeneous Distributed Systems

P. OSIAL
posial@wat.edu.pl

Institute of Computer and Information Systems

Faculty of Cybernetics, Military University of Technology
Kaliskiego Str. 2, 00-908 Warsaw, Poland

Today’s world demands a lot of computing power for many different applications. Distributed systems offer
this with their advantages. High-performance computing clusters are suitable for running different kinds of
jobs like tightly coupled parallel and distributed applications. The queuing system is used to organize tasks and
allocate adequate resources at appropriate time intervals. One of the fundamental elements in scheduling tasks
is to determine the type and characteristics of tasks that will run in a distributed system. The scheduling
algorithm is responsible for the proper assignment of these tasks, to the available resources of a particular
node. The most important advantage of using the job scheduler in a homogeneous environment is the fact that
the scheduler can omit checking of various parameters. Job scheduling aspects in homogeneous HPC clusters
environments is presented in this paper. The grid engine was used as a case study for testing common used
algorithms for job scheduling. This example showed the problems that may occur when scheduling tasks,
depending on the type and quantity of tasks running. The basic algorithm used in this case does not generally
meet their function. Complicated cases require more complex algorithms, taking into consideration proper
resources utilization.

Keywords: scheduling, homogeneous, distributed

1. Introduction

Distributed systems have a wide range of
applications. Today’s world demands a lot of
computing power for many different
applications. Distributed systems offer this with
their advantages like:
• high scalability
• high availability
• very good performance
• transparency
• high reliability.

Professional distributed systems consist of
clusters built from dedicated multiprocessors
servers (nodes) interconnected with a fast
network. There are two main groups of clusters
[1]:
• High-throughput computing clusters −

connecting a wide group of nodes connected
by low-end interconnects, which role is to
maintain redundancy and high-availability of
resources.

• High-performance computing clusters −
high-end nodes have large computing power,
which is connected with very fast, low
latency and wide bandwidth interconnection.
The role of this class of systems is to
provide maximum performance for demand
in terms of computing power and
interprocess communication applications.

Scheduling requirements for each of these
groups is different. Computing clusters have one
common goal, which is the enlargement of the
system throughput. This is understood as the
number of completed tasks in a given unit of
time. In high-throughput computing clusters this
is the main objective of the system implemented
by the load distribution between the different
nodes. Best suitable job types for this class of
systems are loosely coupled distributed and
parallel programs.

High-performance computing clusters are
suitable for tightly coupled parallel and
distributed applications. These types of
applications have special requirements for the
communication and synchronization. Therefore,
this class of clusters requires additional
conditions that must be taken into consideration.
These additional performance objectives are to
minimize the job execution time, reduction of
communication and other overheads [2]. On the
other hand, maximization of resource usage.

Additionally to these two classes, there are
two types of clusters in terms of system
architecture: homogeneous and heterogeneous
system. If the environment is completely
uniform, in terms of hardware and software, then
we will talk about the homogenous environment,
otherwise the heterogeneous environment.

P. Osial, Job scheduling in homogeneous distributed systems

 32

The queuing system is used to organize
tasks and allocate adequate resources at
appropriate time intervals. It also consists
a minimum of three elements together,
interacting with each other: job scheduler,
resource manager and accounting manager.
As shown in figure 1, the scheduler is
responsible for creating a queue of tasks and
mapping it to individual free system resources.

Figure 1. Cluster queuing system

The second element is the resource

manager, passing information on current time
system resources utilization. The next module is
an account manager keeping information on
users like: privileges, job priorities, restrictions
and limits. System administrators can setup
separate privileges for any user. Together they
form a complete system interacting with each
other. Users can check for resource availability
in a cluster, submit a job and check the progress
of the task. When a user submits a new job to the
queuing system, then the job scheduler checks
the status of resources on individual computers
through the resource manager. Taking into
consideration information on priority tasks and
limitations set by the system administrator,
schedules of the job assigning resources in
a queue are used during job execution. Most of
the queuing system allows using external
schedulers and makes it possible to fit the
individual needs of users.

2. Task Characteristics

One of the fundamental elements in scheduling
tasks is to determine the type of tasks that will
run in a distributed system. Depending on the
type of tasks, which are submitted, there should
be different rules for allocating resources for
these tasks. The list below presents the basic
types of tasks:

• Single − job running on any machine in
a cluster, which have a compatible processor
architecture

• Serial − set of tasks associated with each
other, order of execution is essential because
of the necessity to use intermediate results of
the previous job to continue the calculation.
It will be run on one or more machines at the
same time, if the order condition is satisfied

• Symmetric Multiprocessing (SMP) − task
composed of several subtasks running
simultaneously within a single machine.
Uses the n available of nc cores in one
machine n={2,…,nc}

• Distributed tasks − Distributed task
execution using multiple threads that
communicate among themselves. Such a
task can be completed on n cores with the ac
all available n={2,...,ac}.

Each of the above task groups may have
different needs in terms of hardware resources,
such as necessary system memory to run
appropriate or local temporary space for
intermediate results. These types of requirements
are individual for each program and type
of data, which operates in a particular case.
The most demanding, in terms of scheduling,
are distributed tasks, where interprocess
communication plays an important role in the
overall application performance. If the path
between the most distant processors is long, then
the performance of applications will be worse.

BIULETYN INSTYTUTU SYSTEMÓW INFORMATYCZNYCH 7 31−38 (2011)

 33

Figure 2 shows the physical connection between
machines.

Figure 2. Interprocess Communication

Communication between the processors within
the machine is negligible, so these delays are not
taken into consideration. However, after leaving
the machine outside, the communication delays
are strictly dependent on the type and quantity of
connections between intermediary devices. For
this reason, the subprocess tasks should be
distributed from each other with the least
distance that is within a machine or a common
switch.

Another set of restrictions for each type of
jobs are based on software requirements. Each
task has different requirements. However, they
possess a common set of requirements by the
type of task. They can be divided as follows:
• single and serial jobs − generally do not

require additional services to work properly
• SMP jobs − depending on the method of

compilation in most cases require additional
system libraries, and monitoring services
working on the local machine

• distributed tasks − requires for proper
operation of additional services, both for
starting their associated libraries, and unit
of services for monitoring of jobs that
reside in each machine on which task or
part of it is executed.

3. Job Scheduling

In the scheduling system, we can determine
three main components [3]: waiting queue, the
current schedule and scheduling algorithm. The
current schedule provides information regarding
the assignment of system resources like the
number of processor cores and possibilities of
their allocation to each task. The tasks which had
been added to the system for execution, but did
not start yet, are in the waiting queue.

The scheduling algorithm is responsible for the
assignment of tasks to the resources of
a particular node.

The user adding the job to the queue has to
wait to execute its task until other jobs release
system resources. The time spent in the queue
(wait time) depends on many factors for
example: the priority of tasks, the amount of free
resources and number of queued tasks.

Most important advantages of using the job
scheduler in homogeneous environments is the
fact that the scheduler can omit the checking of
various parameters. These values are known
from the start of the scheduling process:
1. Resource specification for every node:

 CPU
 Memory
 Mass memory
 Interconnect type.

2. Software specification:
 Operating system
 Installed software
 Configuration.

These elements are constant, and there is no
need to check their status at the time of
scheduling. The elements that must be taken into
consideration are: the data on the current
memory consumption and available processors.
Knowledge of the hardware architecture allows
to get rid of additional conditions.

3.1. Algorithms

Scientific society sacrificed much time and
effort to explore the aspects of scheduling tasks
in parallel and distributed systems. As a result of
these efforts, several algorithms were created.
Some of them have been implemented in
commercial and open source schedulers.

P. Osial, Job scheduling in homogeneous distributed systems

 34

These algorithms can be divided into two main
groups: space-sharing and time-sharing.

Time-sharing algorithms divide the
available CPU time for discrete time slots
assigned to the individual tasks. Thanks to this
solution it is possible to share multiple tasks
simultaneously on the same hardware.
Algorithm space-sharing on the other hand
assures the allocation of required resources for
particular tasks throughout the entire execution
time. In most cases, the cluster job scheduler
uses space-sharing algorithms.

The basic, simple, commonly used, space-
-sharing algorithms are: First-Come First-Serve
(FCFS), First In First Out (FIFO), Round-Robin
(RR), Shortest Job First (SJF), Longest Job First
(LJF).

FCFS and FIFO as the names suggest
performe tasks in order, then they are added to
the queue. Round-Robin − assigns tasks to
individual machines after adding to queues in
a cyclic and equal manner. Those are simple
algorithms, which efficiency is acceptable for
low loaded systems.

The SJF algorithm uses the declared time of
task completion to prioritize jobs in the queue.
It sorts them from the shortest to longest and
additionally, it is able to gain a good turnaround
time for small tasks. This strategy causes
the delay of long executing jobs.

On the other hand, the LJF at the first run of
jobs with the longest execution time.
Maximizing usage of resources, increases the
turnaround time of short jobs.

To complement these basic algorithms,
most commonly used schedulers use additional
techniques, such as advance reservations,
backfill and fair-share.

Advance reservation techniques use
information provided by the user about the
predicted executing time of the job. After that it
reserves the required resources on selected
machines for a specific job and generates
a schedule.

Backfilling techniques improve space-
-sharing algorithms by filing small low priority
jobs into scheduling gaps. This algorithm does
no changes of the previous schedule, but it
complements the gaps that arise for scheduling
tasks with high priority jobs. The requirement
for usage of this algorithm is information about
added to the queue tasks, such as priority and
estimated time of execution. Information on the
execution time must be provided by the user
running the task, otherwise the usage of this
algorithm is not possible. Figure 3 shows

a sample of a set of tasks using the following
scheduling algorithms.

The fair-share algorithm uses collected
historical data regarding the job execution.
On this basis the priority of tasks dynamically
changes when the system is heavily loaded,
in order to maintain a fair resource allocation
between users.

These algorithms are efficient and simple to
implement. They are widely used in real
applications. In a small group of applications
there are many unimplemented or used
algorithms.

Figure 3. Job scheduling algorithms use example

Generally, they are fairly complex, require

more resources and time to arrange the schedule.
In a real application, the superiority of these
algorithms over the combination of the
algorithms above has not been proved.

BIULETYN INSTYTUTU SYSTEMÓW INFORMATYCZNYCH 7 31−38 (2011)

 35

3.2. Scheduler Attributes

Current schedulers must meet several features in
order to be used in real applications. The main
attributes that each scheduling system must be
able to provide are:
1. Support for many job processing algorithms

such as: FCFS, FIFO, LJF, SJF, advanced
reservations, backfilling and fair-share.

2. Ability to dynamic switching between
algorithms depending on needs (type of job,
group members).

3. Capability to integrate with popular tasks
managers such as SGE, OpenPBS, LSF.

4. Taking into account different nodes of the
hardware architecture (CPU) and
interconnection capabilities between nodes
(bandwidth), in order to best utilitize
available resources.

5. Performance to minimize the overhead of
management job processes. Complex
scheduling algorithms need more time. Task
scheduling must be minimized for system
efficiency.

6. Dynamic change in information on
available resources. To add and remove
machines from the pool without having to
stop or restart the system.

7. Scalability of the system allows them to
operate on small to very large systems, and
seamless support for thousands of
simultaneous tasks.

8. Support of different types of tasks such as:
single, parallel, batch, distributed, serial,
interactive and not interactive with
comparable performance.

9. Check pointing support allows suspending
tasks, to save their state, and resume on the
same or another machine. This makes it
possible to preserve and restore
intermediate results, generated by a job in
case of hardware or software failure.

10. Resistance to incorrect functioning of client
applications or hardware errors of
subsequent nodes. Single machine problems
do not cause faulty operation of the entire
system. Flexible software updates without
having to shut down the entire system or
suspending user tasks.

4. Case Study: Grid Engine

Grid Engine (GE) is an open source advanced
job manager system based on the commercial
Sun Grid Engine (SGE) as part of the Solaris
Enterprise System. It has a well-developed
console and clear graphical interface and

monitor currently loaded on nodes. Services
monitor system resources such as occupancy of
processors, memory, disk space, and parameters
reflecting the use of these resources by
individual users.

Grid Engine supports different types of
tasks including distributed jobs, thanks to the
possibility of tight integration with the most
commonly used parallel environments such as
LAM or MPICH2. In GE terminology the queue
is defined as group of resources, which is
divided in to slots (CPU cores). Multiple queues
can be assigned to the same hardware resources.

Grid Engine supports many important
functions crucial for job management. The most
important of these features are:
o advance reservation
o check pointing
o rule-based resource quota control
o distributed resource management

application API (DRMAA)
o support for interactive jobs
o online resources
o job Submission Verifier (JSV)
o job and scheduler fault tolerance
o topology-aware scheduling and thread

binding
o policy-based resource allocation
o use of multiple scheduling algorithms.

The job after submitting for execution
is sent to the scheduler where requirements and
priorities are determined. Afterwards the master
daemon receives information about adding
another job to the execution queue.
All information regarding the system, tasks and
current state are stored on the server nodes.
When the user adds new jobs to the pool, then
they have the possibility to specify parameters.
Informing how to perform jobs and requirements
to be fulfilled by the system in order for the task
to be executed properly. Fundamental
parameters that should be given when a job
is submitted are:
o type of Job − specified by executing a job in

an appropriate queue
o number of CPU (slots) needed for execution

if the job is SMP or distributed.
o estimated job completion time.

Selected optional parameters that may be
passed to the job manager:
o specific job name
o Software requirements (available software

licenses etc.)
o hardware requirements (amount of memory

and storage resources)
o localization of data results (default local

directory)

P. Osial, Job scheduling in homogeneous distributed systems

 36

o specification of a particular executive node.
More parameters will be given, the more

effective management system will be in job
scheduling and execution. GE takes into
consideration available parameters and on this
basis attempts to arrange the schedule.
Information about resources and job execution
are acquired on execution nodes and sent to
server nodes.

One of the biggest GE advantages is the fact
that cluster administrators can add new
functionality to the system [4]. Thanks to that
the system is based on scripts, it is possible for
the programming of new functionality such as
load sensors to the particular queue or whole
system. As soon as the new queue is defined and
the resources are assigned to it are free. The
system automatically checks for jobs that may
run in this queue, and running a job with the
highest priority or longest waiting time. Jobs are
started on nodes by executive daemons running
on every executive node. These services are
monitoring progress, reporting system load
memory consumption and other configurable
parameters, to the master daemon on the server
node.

Grid engine supports check pointing and
migration. Supported will be the kernel-level and
user-level check pointing, if the application
supports it or by using third-party software like
Berkeley Lab Checkpoint/Restart (BLCR).
Another useful feature is the calendar so it can
be planned when the queue will be available to
users for job submissions or when it will be
inaccessible. For example, for the maintenance
of equipment, software update or adding another
resource pool for a short period of time when
system is heavily loaded etc. In the users point
of view GE provides an intuitive user-friendly
graphical environment to manage tasks.
Obviously the console command set is also
available who provide a larger set of
functionality for the advanced users.

The Grid Engine has some disadvantages
the biggest of them is the fact that the scheduling
module has significant limitations in the
definition of scheduling policies. Mechanisms
for preemptive scheduling and making
reservations are complicated and need
knowledge about the principle of scheduling the
mechanism functions. Supporting parallel tasks
in GE is more complicated than in other
schedulers. Nevertheless, tight integration is
fully supported after the correct manual
configuration of the entire distributed
environment starts scripts. Grid Engine software
is constantly developed and improved.

One of the most important elements
affecting the scheduling is the type and
characteristics of the tasks that are executed. The
easiest cases are the uniform type of tasks, when
the same type of tasks are run with similar
characteristics. The most difficult case is one
where in a single system multiple tasks of
different types are running with varied
characteristics. Despite these limitations this
system is fully working and efficient for most
applications. The system fulfills its function the
best for applications with common types of
tasks. For example, system scheduling of single
or serial tasks like the one shown on figure 4.
But in more complex cases, when the
environment does not have the resources
dedicated to each type of task the situation is
a bit different. For proper scheduling of tasks it
is necessary to use an advanced reservation
mechanism and the changing of priorities for
individual tasks and task types. The result is
often not in accordance with the awaited result.

Figure 4. Scheduling single and serial jobs using
default queue settings in GE

Each environment has different

characteristic. The percentage of job types
running in a cluster system depends on the type
of tasks that are run by users and the level of
sophistication, which software offer. The same
software might contribute to the load of 100% or
less than 50%. The time of task execution also
varies depending on the characteristics of the
input data. The greatest demanding and also
difficult to predict case are applications used for
scientific calculations. Parallel applications,
depending on how their source code was written,
have a different degree of parallelization. For
most cases, real measurable acceleration of the
application is visible with the use of up to the
eight sub-processes. There are of course
exceptions to this rule, currently well-written
applications are scalable to 16 or even 64 and

BIULETYN INSTYTUTU SYSTEMÓW INFORMATYCZNYCH 7 31−38 (2011)

 37

more sub-processes, each running on an
individual CPU. Everything depends on the
degree of parallelization, which the running
application has. Compilation efficiency and
hardware parameters such as interconnect
latency etc. on execution nodes. For this reason,
parallel tasks should be executed on the smallest
possible number of accessible nodes. The
optimal solution is to use one machine as far as
the amount of available resources allow it.

For example the encountered in a
production environment is a set of jobs. That
jobs run by a group of users with the same
priority. The relationship between the types of
tasks is as follows: single/serial jobs 50%, SMP
jobs 10% and parallel tasks 40%. Most
encounter problems in job scheduling with GE
default algorithms without advanced reservation
for the particular tasks are shown on figure 5.
Figure 5a presents a case, in which we are
dealing with combinations of different tasks
without setting an execution deadline on parallel
tasks. Large distributed jobs in this case are
subject to starvation during heavy system load
and the continuous inflow of single tasks. Figure
5b shows the same scenario with the preset
deadline on parallel tasks. In this situation the
delay of a distributed task is very large and
depends on the deadline time. Figure 5c, 5d
shows a typical problem when running large
distributed jobs where subtasks distribution on
the resources is not optimal. One of the poorer
cases is 5c where two parallel jobs and a single
task are running on the same node. The worst
case scenario is shown on figure 5d. Parallel
tasks are running simultaneously, on all nodes
with single and serial jobs. Performance of
parallel jobs depends on many factors. One of
the most significant factor, especially for large
amounts of data procession is interprocess
communication. The more demanding task will
run on one node the bigger will be the cost of
communication. By analogy the more hosts are
involved in this process the higher the cost.
The second factor is the overhead caused by the
intensive use of system resources. Thereby
decreasing the power by redirecting resources
to operate the I/O. Depending on the application
gap the performances may vary from 4%
to 53%.

Many factors influence the estimating
execution time. Because of that using advanced
reservation to determine the correct scheduling
of tasks is not the optimal solution. Often the
resources are reserved, but the job ends running
before the time of its execution or after the

expected time. This causes gaps and shifts in the
schedule.

5. Conclusions and Further Research

Distributed systems are very well known in
today’s world of science. They where researched
for a couple of years and most aspects of this
problematic field was well described. According
to the fact, that some aspects are still not well
known, the main concept of this system consists
many of loosely interconnected processors.
Distributed shared memory is used to store and
share data.

Figure 5. Scheduling issues

Optimization of such systems is reduced
to optimal scheduling, of running jobs on
this system.

They are many goals in optimization, two
most common used are. minimization of

P. Osial, Job scheduling in homogeneous distributed systems

 38

completion times of jobs and maximization
usage of available resources. In most cases both
criteria are used simultaneously. Proper
scheduling will depend on the characteristics of
the tasks performed, and the type of distributed
environment. In the considered environment,
high performance computing, parallel tasks are
an important part of running a job. These tasks
require special attention due to the number of
requirements to be met by the system in order
for such a task to finish correctly. Moreover, the
time that the job is executed should be
reasonably short, in accordance with
expectations. Systems, which are operating only
single and serial jobs do not require advanced
scheduling techniques. Using a typical SJF
algorithm with backfilling is in most cases close
to an optimal solution acceptable in real
applications. Scheduling more complex cases,
where there are additional task types, parallel
and SMP requires the use of more complex
techniques for the proper distribution of jobs.
Fulfilling inflicted conditions and criteria for
optimization.

A basic algorithm used in this case does not
generally meet their function even after
completion of their functionality by advanced
reservation and fare share. The administrator
intervention is indispensable to enable proper
operation of scheduler. This intervention is
modification of manually adjustable parameters
such as job weight and deadline time. Such
applications require more complex algorithms,
taking into consideration proper resources
utilization. For homogeneous systems, this
situation is so much better that some of the
parameters are fixed, which partly reduces the
complexity, by removing part of the restrictions,

related to the variety of resources. The task
scheduling problem is NP-hard for two nodes.
So, for large systems with tens of nodes, this
problem is possible to optimize only by
approximations. However, it must be brought an
appropriate set of conditions, and an
optimization function that enables the creation of
a task scheduling algorithm.

The logical extension to this paper is the
examination of the best available scheduling
algorithms to this specific environment.
Determination of the optimal scheduling
algorithm for a complex case, with defined
constraints make possible to implement in Grid
Engine environment.

6. Bibliography

[1] S. Iqbal, R. Gupta, Y. Fang, ”Job

Scheduling in HPC Clusters”, Power
Solutions, 133−136, Dell Inc., February
2005.

[2] H.D. Karatza, R.C. Hilzer, ”Parallel job
scheduling in homogeneous distributed
systems”, Simulation, 79, 5−6, 2003.

[3] C. Franke et al., J. Lepping,
U. Schwiegelshohn, ”Greedy scheduling
with costume-made objectives”, Annals of
Operations Research, 180, 145−167,
Springer, 2010.

[4] G. Borges et al., ”Sun Grid Engine, a new
scheduler for EGEE middleware”,
IBERGRID − Iberian Grid Infrastructure
Conference, 2007.

Harmonogramowanie zadań w homogenicznych systemach rozproszonych

P. OSIAL

W dzisiejszych czasach wzrasta zapotrzebowanie na moc obliczeniową dla szeregu aplikacji. Systemy
rozproszone dzięki swym atrybutom są w stanie sprostać tym wymaganiom. Klastry obliczeniowe o wysokiej
wydajności tworzą odpowiednie środowisko służące do uruchamiania wielu typów zadań. System kolejkowania
umożliwia poprawne rozmieszczanie aplikacji na poszczególnych zasobach, w odpowiednich przedziałach
czasowych. Jednym z podstawowych elementów podczas tworzenia harmonogramu jest określenie typu
i charakterystyki uruchamianych zadań. Dzięki temu algorytm odpowiedzialny za uszeregowanie zadań jest
w stanie poprawnie wykorzystać dostępne zasoby. Jedna z zalet układania harmonogramu zadań w systemie
homogenicznym jest możliwość pominięcia sprawdzania szeregu parametrów. W tym artykule badano aspekty
szeregowania zadań w jednorodnym środowisku klastrów HPC. Grid Engine został wykorzystany jako studium
przypadku do badania najczęściej używanych algorytmów w planowaniu zadań. Przedstawiono problemy
mogące występować podczas planowania zadań w zależności od typu oraz ilości zadań. Pokazano również wady
podstawowych algorytmów. W przeciwieństwie do zaawansowanych algorytmów, nie spełniały one swej funkcji
w skomplikowanych przypadkach.

Słowa kluczowe: harmonogramowanie, homogeniczny, rozproszony.

