
BIULETYN INSTYTUTU SYSTEMÓW INFORMATYCZNYCH 7 19−24 (2011)

 19

Requirements Modeling in Agile Methodologies with X-Machines

A. LIPSKI
lipski.artur@gmail.com

Faculty of Cybernetics, Military University of Technology

Kaliskiego Str. 2, 00-908 Warsaw, Poland

The demand for more complex but also more reliable and correct computer based systems on the one hand, and
the fact that several changes in the user requirements through the development cycle on the other hand, leads to
the need for more formal but also agile development methodologies. X-Machines is an intuitive formal method
which can be easily applied to agile methodologies, especially in specification phase, gaining a lot of
advantages.

Keywords: X-Machine, agile methods, requirements modeling.

1. Introduction

It is proved that traditional approach of software
development process fails to cope with even
small changes in requirements at any stage after
the analysis phase. It is likely that in large
industries the most popular software
development methodology is the waterfall
process, which however exhibits an awkward
behavior in changes during the later stages of the
development. This is mostly the reason for the
dramatic increase in time and cost of the
development of the software.

To develop reliable, high integrity and
correct systems it is said that companies which
produce software should use formal methods to
achieve this. But, it is also a common belief of
people outside the formal methods community
that formal methods are difficult to understand
and to use. Furthermore formal specification can
be costly and time consuming. Also formal
methods do not cope well with late changes in
requirements which could result in major rework
of the produced software.

In order to be useful to modeling of
computer base systems a formal method should
be able:
• to model both the data and flow of the

system
• to introduce a practical, modular,

disciplined way of modeling that will
facilitate the modeling of large scale
systems

• to be intuitive, practical and effective
towards implementation of the system

• to facilitate development of correct system.
One of formal methods is common to fulfill

all above aspects. This formal method is so

called X-Machine introduced by Eilenberg [1] in
1974 which has been shown to have the
computational power of a Touring machine.
In 1988 Holcombe [4] proposed X-Machines as
a basis for possible specification language which
is capable of modeling both the data and flow of
the system. With the development of a formal
testing strategy, a formal verification technique
and a methodology of building communicating
systems out X-Machine components, and with
an added support of tools and the proposal of
a formal framework for the development of more
reliable systems, most of the above mentioned
requirements are met with emphasis in the
development of correct systems.

Over the last years agile methodologies
have been introduced which attempt a useful
compromise between no process and too much
process, providing just enough to gain
a reasonable effect. Some of the proposed agile
methodologies are: Extreme Programming (XP),
Feature Driven Development (FDD), SCRUM,
Dynamic System Development Method
(DSDM), Agile Modeling (AM), etc.

This article will show what X-Machines are
and how to use them with one of the popular
agile methodologies to model requirements
in the way to achieve correct system.

2. X-Machines

X-Machine is a formal method which provides
a diagrammatic approach of modeling the flow
of the system by extending the expressive power
of Finite State Machine (FSM). Transitions
between states are not expressed just by a simple
input symbols but through a set of functions.
X-Machines are capable of modeling non-trivial

A. Lipski, Requirements Modeling in Agile Methodologies with X-Machines

 20

data structures by using a so called memory,
which is attached to the X-Machine. Functions
receive input symbols and memory values, and
produce output while modifying a memory
values.

The X-Machine model has many advantages
[8]:
• it is formal
• it is rigorous
• it is expressive
• it provides unambiguous models
• it is capable to capture both static and

dynamic system information
• it is based on a fully general and formalized

computational model, that could form the
basis of an universal approach to design of
systems

• it can support component based
development

• it is supported by appropriate tools.

2.1. Definition of X-Machines

As it was said earlier X-Machine is essentially
a finite state machine whose label are elements
of R(X), where R(X) is a relational monoid
on X. A particular class of X-Machine is
a stream X-Machine which is defined as follows:
For any set A, Aε denotes the set A ∪ {ε}, where
ε is an empty sequence. A* denotes the free
monoid generated by A [5].

Definition 1. A stream X-Machine is a tuple

 (1)
where:
• and are finite sets called the input and

output alphabets respectively
• is the finite set of states
• is a (possibly infinite) set called memory
• is a finite set of partial functions of the

form:
• is the next state partial

function
• and are the sets of initial and final states
• is the initial memory value.

We define a configuration of the
X-Machine by , where

. A machine
computation starts from an initial configuration,
having the form , where is
an initial state and is the input sequence.
Figure 1 shows a model for abstract X-Machine.

Fig. 1. Abstract X-Machine model [5]

Definition 2. The output corresponding to an
input sequence. A change of configuration,
denoted by :

 (2)
is possible if:
•
• there is a function emerging from q

and reaching , , so
that and

 denotes the reflexive and transitive closure of
.

For any , the output corresponding to
this input sequence, computed by the stream X-
Machine X is defined as:

 (3)

Definition 3. A stream X-Machine is called
deterministic if:
• contains only one element:
•
• if ’ are distinct arcs emerging from the

same state, then .

Definition 4. A stream X-Machine is called
minimal, when its associated automation

 is minimal.

Definitions quoted above are the main
definitions in X-Machine theory and are true for
all kinds of X-Machines. When there is a need to
model complex systems with dynamic
interactions between its components, usage has
so called Communicating X-Machines System.

Definition 5. A Communication X-Machines
System (shortly CXMS) with n components is
a 4-tuple , where:
• is the X-Machine with number ,

• is a matrix of order , used for

communication between the X-Machines
• is the initial content of
• is the output tape of the system; at any

time, the content of has the form

BIULETYN INSTYTUTU SYSTEMÓW INFORMATYCZNYCH 7 19−24 (2011)

 21

. For any will
denote the output tape of the component
of the system.

Definition 6. A communication function is
a function:

 (4)
where:

.
Definition 7. A processing function is
a function:

 (5)
where:

.

Fig. 2 shows abstract model of a Communication
X-Machine.

MEMORYInput stream Output streamMEMORY

pf
PS

CS
cf

m m’

IN

OUT

Communication
Matrix

Pi

Fig. 2. Abstract example of Communication
X-Machine model[5]

2.2. Extreme X-Machines

There is also a special kind of X-Machines
called Extreme X-Machines (XXM) [9], which
has been design to be both simple and flexible to
use in agile scenarios.

An XXM is an extended form of the
X-Machine which allows each function to be
guarded by a predicate which identifies a state of
memory, with the caveat that from the origin
state there must also be a transition defined for
the inverse predicate. The XXM has complex
memory structure, allowing to specify variable
names, arrays and arrays within arrays. The
XXM within states are limited such that they run
when the state is entered and when they exit the
state is exited.

By using a predicate as a guard function on
a state transition it is possible to separate the
memory that is needed from the rest of the
memory. In case where this memory state
defines a database, it means that there is no need
to consider many possible states of the database

and instead define what a valid state might look
like.

Extreme X-Machines are mostly used in
requirements engineering phase to represent
elements of the user interface which helps in
separating the user interface code form that of
system control code.

3. From requirements to X-Machines

Software requirements can be captured from
users and documented in many ways. Each agile
methodology has its own technic to document
requirements. For example Unified Process (UP)
uses Use Cases and Extreme Programming uses
Story Cards and Story Boards [2], [3].

No matter which agile methodology and
requirements capture technic is used, to
transform a requirement to the corresponding
X-Machine, firstly the states and the transitions,
then memory structure, the input and output sets,
and finally the transitions functions should be
defined.

3.1. States and Transitions

States and transitions are derived by examining
the steps both the main success scenario and the
extensions:
• there is always an initial state corresponding

to that state in which requirement scenario
makes its start. In use case driven
development it would be a moment in
which the actor triggers the use case

• the final state, which usually coincidence
with the initial state, is notated as a different
node in the state machine to emphasize the
end or termination of requirement scenario

• each user interaction introduces a new
transition leading to a new state in the
X-Machine state diagram

• each extension introduces a new transition
from the same starting state of the previous
user interaction. The transition leads to
a new state, if an interaction follows in the
extension steps. If there is no user
interaction in the extensions, unless
otherwise stated, the transition loops back
to the same state.
Each user interaction and all its subsequent

system functions until the next user interaction
are modeled by a single processing function. So
a processing function does not only model the
user interaction but also all the processing that
guarantees that all subsequent system functions
are correctly executed. The processing function
is not always triggered by the interaction but it

A. Lipski, Requirements Modeling in Agile Methodologies with X-Machines

 22

contains, as guard expression, all the conditions
that have to be satisfied for the transition to
occur.

3.2. Memory

The memory structure and contents cannot be
directly derived from the requirement text. The
object-flavored memory structure is easily
derived from the domain model which is usually
represented as a static class diagram. A domain
model presents the concepts of the problem
domain and their relationships. Concepts are
represented as classes with attributes and
relationships as associations between classes.

Since memory has to be filled with specific
values, we define sample objects for operating
the machine. A small number of objects is used
in order to exercise different scenarios.

3.3. Input and Output Sets

In use case driven development inputs can be
directly derived from the system sequence
diagram. In turn output set is usually defined as
a set of messages, that are displayed after each
transition.

3.4. Processing Functions

For each processing function there should be
defined the input and the memory state that
trigger the function, the output that the function
produces and the memory update.

4. A X-Machine example

Let’s say that there is a need to model a behavior
of a vending machine. The usual procedure of a
vending machine is that customer enters some
coins (10gr, 20gr, 50gr, 1zł, 2zł, 5zł), selects a
soft-drink (coke, sprite, fanta, nestea) and finally
presses a button to execute the order (enter
button). The prices of the drinks are stored in
some database that is accessed by a set of
external data processing functions related to the
model.

Figure 3 shows below a X-Machine diagram for
vending machine from example.

ready

await_coin

await_selection

enter_pressed

continue_ready

get_selection

get_selection
continue_await_selection

complete_money

continue_await_coin

get_coin

Fig. 3. X-Machine state diagram for vending machine

4.1. Memory example

A partial class diagram for the example of X-
Machine model of vending machine is shown in
Figure 4.

‐amount
‐available

Class1::Drink

‐coins_entered

Class1::Order

+Belongs*

‐selected_drink1

Fig. 4. Partial class diagram of vending machine

For each X-Machine we have to define the

initial memory state. The memory instance
below could be the initial memory state of X-
Machine.

M={Order, Drink}
Order={{order1, order2}, {coins_entered,
selected_drink}}
Drink={{coke, sprite, fanta, nestea},
{amount,available}}
where
coins_entered={10, 20, 50, 100, 200, 500}
amount={150,200}
available={drink, no_drink}
order1.coins_entered=0,
order1.selected_drink=null,
order2.coins_entered=0,
order2.selected_drink=null,
coke.amount=150, coke.available=drink,
sprite.amount=150, sprite.available=drink,
fanta.amount=150, fanta.available=no_drink.
nestea.amount=200, nestea.available=drink

BIULETYN INSTYTUTU SYSTEMÓW INFORMATYCZNYCH 7 19−24 (2011)

 23

4.2. Input and Output Sets example

In example machine’s input refer either to the
coins (CoinType), or to the drink selected
(SelectionType), or finally to a button
(ProcessType) which executes the order.

Input={CoinType, SelectionType, ProcessType}
where
CoinType={10, 20, 50, 100, 200, 500}
SelectionType={coke, sprite, fanta, nestea}
ProcessType={enter}

The machine’s output consists of three basic
elements:
• the current state of the machine (State)
• the amount of money inserted so far

(AmountType)
• a message (AvailableDrinkType) informing

the user whether a drink is available or not.

Output=
{State, AmountType, AvailableDrinkType}
where
AmountType={150,200}
AvailableDrinkType={drink, no_drink}
State={await_coin, ready, await_selection}

4.3. Processing Functions example

Below there is a definition of a processing
functions of the vending machine.

get_coin(x, (amount, selection)) =
if (x ∈ coin_type and ¬sufficient(x, amount))
then ((await_coin, add(x, amount), no_drink),
(add(x, amount), selection))

5. Advantages of using X-Machines

Using X-Machines in combination with agile
methodologies to model system requirements
has several valuable advantages:
• the X-Machine method supports

a disciplined modular development,
allowing the developers to decompose the
system under development. Decomposition
aids a value in handling large scale system
modeling

• X-Machines provide the appropriate style of
developing models reusing off-the-shelf
existing verified component models that
where made earlier

• formal modeling provides that description
are unambiguous. The developers
understand system better as a result of

trying to describe it unambiguously.
An intuitive formal method, which
X-Machine is, makes possible for the
simple user to understand the documents
produced in modeling phase. This enhances
the communication between the user and
the development team allowing feedback
from the users

• tools, like automatic animation of the
model, help user to monitor the model
proposed by the development team allowing
more complete and immediate feedback.
As a consequence at the end of each
iteration the user provides valuable
feedback early in the development process

• the development team and the users learn
while developing with agile methodologies,
and all learn fast due to the intuitiveness of
the X-Machine formalism, which improves
the whole process

• changing requirements is (must be)
an excepted event through the development
time and can be handled efficiently by the
modularity of the X-Machine model
(especially in communicating X-Machine
model) and the flexibility of the X-Machine
component model.

6. Conclusion

The aim of this article was to explain what are
X-Machines and how to model software
requirements for agile methodologies with them.

X-Machines provide a powerful and easy
in use formal tool for capturing and documenting
requirements. Different types of X-Machines
make it easy to model software requirements
from user interface behavior (Extreme
X-Machines), ends on internal software
components and dynamic connections between
them(Communicating X-Machine model).

To formalize agile requirements using
X-Machines, the structure of the memory was
derived from the domain model. By doing so,
the domain model was also validated, since an
incomplete domain model would not allow the
execution of X-Machines. Thus formalization
also bridges the functional world of
requirements with the object-oriented world of
class diagrams used in the domain model.

A. Lipski, Requirements Modeling in Agile Methodologies with X-Machines

 24

7. Bibliography

[1] S. Eilenberg, Automata, languages

and machines, Academic Press, New York,
1994.

[2] K. Beck, Extreme programming explained:
embramce change, Addison-Wesley, 2000.

[3] A. Cockburn, Writing Effective Use Cases,
Addison-Wesley, 2000.

[4] M. Holcombe, X-Machines as a basis for
dynamic system specification, Software
Engineering Journal, 1988.

[5] M. Holcombe, F. Ipate, Correct Systems:
Building a Business Process Solution,
Springer Verlag, Berlin, 1998.

[6] M. Stannett, The Theory of X-Machines –
Part1, University of Sheffield Regent
Court, United Kingdom, 2006.

[7] M. Holcombe, ”An integrated methodology
for the formal specification, verification and
testing systems”, Proc. EuroSTAR 93,
London, 1993.

[8] H. Gheorgescu, C. Vertan, ”A New
Approach to Communicating X-machines
Systems”, Journal of Universal Computer
Science, Vol. 6, No. 5, 2000.

[9] C. Thomson, W. Holcombe, ”Applying XP
Ideas Formally: The Story Card and
Extreme XMachines”, Proceedings of 1st
South-East European Workshop on Formal
Methods, Thessaloniki, Greece, 57−71,
South−East European Research Centre,
2003.

Modelowanie wymagań w metodach Agile z wykorzystaniem X-Machines

A. LIPSKI

Popyt na bardziej złożone, ale również bardziej wiarygodne i prawidłowe systemy z jednej strony, oraz fakt,
że klika zmian w wymaganiach użytkownika w trakcie cyklu rozwoju oprogramowania z drugiej strony,
prowadzi do konieczności użycia bardziej formalnych ale również zwinnych metody wytwarzania
oprogramowania. X-Machines to intuicyjne formalne metody, które można łatwo zastosować wraz z metodami
Agile, zwłaszcza w fazie specyfikacji wymagań, osiągając wiele zalet.

Słowa kluczowe: X-Machine, metody Agile, modelowanie wymagań.

