PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fotoniczne układy scalone

Identyfikatory
Warianty tytułu
EN
Photonic integrated circuits
Języki publikacji
PL
Abstrakty
PL
W artykule omówiono rozwój fotonicznych układów zintegrowanych oraz techniki integracji optycznych komponentów na podłożach półprzewodnikowych z fosforku indu. Przedstawiono postęp i rozwój w fotonice oraz obowiązujące tu prawo Moore'a. Prezentowano także koncepcję technologii generycznej oraz podstawowe bloki funkcjonalne fotoniki wykorzystywane do projektowania oraz wytwarzania urządzeń fotonicznych. Omówiono europejską platformę fotoniczną Jeppix służącą do projektowania układów scalonych i sposób jej funkcjonowania. Opisana została również zasada działania podstawowych komponentów optycznych oraz przedstawiono kilka zaawansowanych funkcjonalnie fotonicznych układów scalonych.
EN
In this paper a brief look on development of photonic integrated circuits and current status of integration technologies based on indium phosphide platform is given. Progress in photonics and corresponding Moore's law are described. Generic technology concept and basic building blocks which are used to design and fabricate functionally advanced photonic devices are presented. Model of multi-project wafer run and Jeppix, the European photonic platform, are described. An account of the operation principle of optical components is given and few examples of complex photonic circuits are shown.
Rocznik
Strony
74--80
Opis fizyczny
Bibliogr. 35 poz., il., rys.
Twórcy
autor
  • COBRA Research Institute, Eindhoven University of Technology, The Netherlands
Bibliografia
  • [1] Miller S.: Integrated Optics: An Introduction. The Bell Systems Technical Journal, vol. 48, no. 7, 1969, pp. 2059-2070.
  • [2] Tien P.: Integrated Optics and new wave phenomena in optical waveguides. Review of Modern Physics, vol. 49, no. 2, 1977, pp. 361-420.
  • [3] Network of Excellence ePIXnet on photonic integration, www.ePIXnet.org.
  • [4] Silicon Photonics Platform, epixfab, www.epixfab.eu.
  • [5] Joint European Platform for InP-based Photonic Integrated Components and Circuits, www.jeppix.eu.
  • [6] EuroPIC, European manufacturing platform for photonic integrated circuits, www.europic.jeppix.org.
  • [7] Helios project, Photonics Electronics functional Integration on CMOS, www.helios-project.eu.
  • [8] Paradigm, Photonic Advanced Research and Development for Integrated Generic Manufacturing, www.paradigm.jeppix.eu.
  • [9] Smit M.: Past and future of InP-based photonic integration. 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEGS 2008), Newport Beach, CA, USA, 9-13 November 2008, pp. MF1-51/52.
  • [10] Yamaguchi M. i in.: Semiconductor photonic integrated circuit for high-density WDM light source. 12th IEEE International Semiconductor Laser Conference, 1990. pp. 160-161.
  • [11] Kaiser R.: Monolithically integrated polarisation diversity heterodyne receivers on GaInAsP/InP. Electronics Letters, vol. 30, no. 17, 1994, pp. 1446-1447.
  • [12] Zirngibl M. i in.: WDM receiver by monolithic integration of an optical preamplifier, waveguide grating router and photodiode array. Electronics Letters, vol. 31, no. 7, 1995, pp. 581-582.
  • [13] Steenbergen C. i in.: Compact low loss 8 x 10 GHz polarisation independent WDM receiver. 22nd European Conference on Optical Communication (ECOC 1996), vol. 1, September 15-19 1996, pp. 129-132.
  • [14] Zirngibl M. i in.: An 18-Channel Multifrequency Laser. IEEE Photonics Technology Letters, vol. 8, no. 7, 1996, pp. 870-872.
  • [15] Staring A. A. M. et al.: A compact nine-channel multiwavelength laser. IEEE Photonics Technology Letters., vol. 8, no. 9, 1996, pp. 1139-1141.
  • [16] Tolstikhin V.: 44-channel optical power monitor based on an echelle grating demultiplexer and a waveguide photodetector array monolithically integrated on an InP substrate, Optical Fiber Communications Conference (OFC 2003), Atlanta, Georgia, USA, 23-28 March 2003, p. PD37-1.
  • [17] ASIP/Three-Five Photonics, www.rle.mit.edu/cips/conference04/Pennings_ASIP.pdf.
  • [18] Nagarajan R. i in.: Large-Scale Photonic Integrated Circuits. IEEE Journal of Selected Topics in Quantum Electronics, vol. 11, no. 1, 2005, pp. 50-65.
  • [19] Nicholas S. i in.: The world's first InP 8x8 monolithic tunable optical router (MOTOR) operating at 40 Gbps line rate per port. Conference on Optical Fiber Communication (OFC 2009), San Diego, CA, USA, 22-26 March 2009, p. PDPB1.
  • [20] Soares F. i in.: Monalithically integrated InP wafer-scale 100-channel x 10-GHz AWG and Michelson interferometers for 1-THz-bandwidth optical arbitrary waveform generation. Conference on Optical Fiber Communication (OFC 2010), San Diego, CA. USA, 21-25 March 2010, p. OthS1.
  • [21] Smit M.: InP photonic integrated circuits. 15th Annual Meeting of the IEEE, Lasers and Electro-Optics Society (LEOS 2002), vol. 2, 10-14 November 2002, pp. 843-844.
  • [22] van der Tol J. i in.: InP-based photonic circuits: Comparison of monolithic integration techniques. Progress in Quantum Electronics, vol. 34, no. 4, 2010, pp. 135-172.
  • [23] Coldren L: Recent advances in InP PICs. IEEE International Conference on Indium Phosphide and Related Materials (IPR 2009), Newport Beach, CA, USA, 10-14 May 2009, p. PLE2.
  • [24] den Besten J.: Integration of Multiwavelength Lasers with Fast Electro-Optical Modulators. PhD Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands 2004.
  • [25] Smit M.: New focusing and dispersive planar component based on an optical phased array. Electronics Letters, vol. 24, no. 7, 1988, pp. 385-386.
  • [26] Smit M. i in.: PHASAR-Based WDM-Devices: Principles, Design and Applications. IEEE Journal of Selected Topics in Quantum Electronics, vol. 2, no. 2, 1996, pp. 236-250.
  • [27] Soladano L. i in.: Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications. Journal of Lightwave Technology, vol. 13, no. 4. 1995, pp. 615-627.
  • [28] Hill M. i in.: Optimizing Imbalance and Lossin 2x23-dB Multimode Interference Couplers via Access Waveguide Width. Journal of Lightwave Technology, vol. 21, no. 10, 2003, pp. 2305-2313.
  • [29] Harmsma P.: Integration of Semiconductor Optical Amplifiers in Wavelength Division Multiplexing Photonic Integrated Circuits. Rozprawa Doktorska, Technische Universiteit Delft, Holandia 2000.
  • [30] Xu L. i in.: High-Performance InP-Based Photodetector in an Amplifier Layer Stack on Semi-Insulating Substrate. IEEE Photonics Technology Letters, vol. 20, no.23, 2008, pp. 1941-1943.
  • [31] Pascher W. i in.: Modelling and characterization of a travelling-wave electro-optic modulator on InP. Advances in Radio Science, no. 1, 2001. pp. 67-71.
  • [32] Leijtens X.: JePPIX: the platform for InP-based photonics, 15th European Conference on Integrated Optics (ECIO 2010), Cambridge, UK, 7-9 April 2010, p. ThG3.
  • [33] Heck M. i in.: Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed. IEEE Photonics Technology Letters, vol. 21, no. 13, 2009, pp. 905-907.
  • [34] Nakano Y: Monolithically integrated phased-array switch for optical packet switching and interconnection. Conference on Optcal Fiber Communication (OFC 2010), San Diego, USA, 21-25 March 2010, p. OMP4.
  • [35] Barbarin Y.: Realization and modeling of a 27-GHz integrated passively mode-locked ring laser. IEEE Photonics Technology Letters, vol. 17. no. 11, 2005. pp. 2277-2279.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0043-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.