PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Progowy model pracy lasera z ośrodkiem aktywnym w postaci 2D kryształu fotonicznego

Identyfikatory
Warianty tytułu
EN
Threshold model of 2D photonic crystal laser operation
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono progowy model generacji promieniowania w laserze posiadającym ośrodek aktywny w postaci kryształu fotonicznego. Zaprezentowany opis obejmuje struktury o symetrii kwadratowej i trójkątnej w obu przypadkach zarówno dla polaryzacji TE jak i TM. Wyniki obliczeń uwzględniają progowe rozkłady pola oraz zawierają zależności wzmocnienia progowego od odstrojenia od częstości Braga.
EN
This paper describes threshold model of two dimensional photonic crystal laser operation. It considers square and triangular lattice structures for TE and TM polarizations. The outcome of the calculations illustrates threshold field distributions and the dependence of threshold gain versus Bragg frequency deviation.
Rocznik
Strony
56--64
Opis fizyczny
Bibliogr. 36 poz., rys., wykr.
Twórcy
autor
  • Politechnika Warszawska, Wydział Elektroniki i Technik Informacyjnych, Instytut Mikroelektroniki i Optoelektroniki
Bibliografia
  • [1] Yablonovitch E.: Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Lett., 58, 20, 1987, 2059.
  • [2] Yablonovitch E.: Photonic band-gap structures. JOSA B, 10, 2, 1993, 283.
  • [3] John S.: Strong localization of photons in certain disordered dielectric superlattices.Phys. Rev. Lett., 58, 23, 1987, 2486.
  • [4] Scherer H. i in.: Tunable GalnNAs Lasers With Photonic Crystal Mirrors. IEEE Photonics Technology Lett., 17, 11, 2005,2247.
  • [5] Andrea Dunbar L. et. al.: Design, fabrication and optical characterisation of quantum cascade lasers at terahertz frequencies using photonic crystal reflectors. Opt. Express, 13, 22, 2005, 8960.
  • [6] Watanabe H., Baba T.: Active/passive-integrated photonic crystal slab microlaser. Electron. Lett., 42, 12, 2006, 695.
  • [7] Sugimoto Y. i in.: Room temperature operation of InAs quantum-dot laser utilizing GaAs photonic-crystal-slab-based line-defect waveguide with optical pump. IEEE J. of Sel. Topics in Quant. Electron., 11, 5, 2005, 1055.
  • [8] Shih M.-H. i in.: TuJ7, LEOS Annual Meeting, Sydney, Australia, 23-27 October 2005.
  • [9] de Rossi S. i in.: Longitudinal Mode Selection in Constricted Photonic Crystal Guides and Electrically Injected Lasers. J. of Lightwave Technology, 23, 3, 2005, 1363.
  • [10] Mahnkopf S. i in.: Tunable photonic crystal coupled-cavity laser. IEEE J. of Quant. Electron., 40, 9, 2004, 1306.
  • [11] Ozbay E. i in.: Investigation of localized coupled-cavity modes in two-dimensional photonic band gap structures. IEEE J. of Quantum Electronics, 38, 7, 2002, 837.
  • [12] Asano T. i in.: Analysis of the experimental Q factors (~1 million) of photonic crystal nanocavities. Opt. Express, 14, 5, 2006, 1996.
  • [13] Painter O. J. i in.: Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP, J. Light. Technol., 17, 11, 1999, 2082.
  • [14] Scherer A. i in.: Photonic crystal nanocavity lasers. Int. J. High Speed Electronics and Systems, 10, 1, 2000, 387.
  • [15] Zhou W. i in.: Characteristics of a photonic bandgap single defect microcavity electroluminescent device. IEEE J. Quant. Electron., 37, 9, 2001, 1153.
  • [16] Lee P-T. i in.: Operation of photonic crystal membrane lasers above room temperature. Appl. Phys. Lett., 81, 18, 2002, 3311.
  • [17] Cao J. R. i in.: Nanofabrication of photonic crystal membrane lasers. J. Vacuum Science B, 20, 2002, 618.
  • [18] Keum-Hee Lee i in.: Square-lattice photonic-crystal vertical-cavity surface-emitting lasers. Opt. Express, 12, 17, 2004, 4136.
  • [19] Ohnishi Dai i in.: Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser. Opt. Express, 12, 8. 2004, 1562.
  • [20] Notomi M. i in.: Directional lasing oscillation of two-dimensional Organic photonic crystal lasers at several photonic band gaps. Appl. Phys. Lett., 78, 2001, 1325.
  • [21] Cojocaru C. i in.: Room-temperature simultaneous in-plane and vertical laser operation in a deep-etched InP-based two-dimensional photonic crystal. IEE Proc.-Optoelectron., 152, 2, 2005, 86.
  • [22] Mossakowska-Wyszyńska A. i in.: Analiza numeryczna pracy lasera zbudowanego z dwuwymiarowego kryształu fotonowego. Elektronika, 10, 2004, 29.
  • [23] Czuma P. i in.: Analytical model of one dimensional SiO2:Er doped photonic crystal Fabry-Perrot laser - semiclassical approach. Proc. SPIE, Optical Components and Materials II, 5723, 2005, 307.
  • [24] Mosakowska-Wyszyńska A. et. al.: Physica Spectra, vol. T 118, p. 111, 2005.
  • [25] Notomi M., Suzuki H., Tamamura T.: Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps. Appl. Phys. Lett., 78, 1325, 2001.
  • [26] Florescu L. . Busch K., John S.: Semiclassical theory of lasing in photonic crystals. J. Opt. Soc. of Amer. B, 19, 2215, 2002.
  • [27] Sakai K., Miyai E., Noda S.: Two-dimensional coupled wave theory for square-lattice photonic-crystal lasers with TM-polarization. Opt. Express, vol. 15, no. 7, pp. 3981-3990, Apr. 2007.
  • [28] Sakai K., Yue J., Noda S.: Coupled-wave model for triangular-lattice photonic crystal with transverse electric polarization, Opt. Express, vol. 16, no. 9, pp. 6033-6040, Apr. 2008.
  • [29] Sakai K., Miyai E., Noda S.: Coupled-wave theory for square-lattice photonic crystal lasers with TE polarization. IEEE Journal of Quantum Electronics, vol. 46, no. 5, pp. 788-795, May 2010.
  • [30] Sakai K., Miyai E., Sakaguchi T., Ohnishi D., Okano T., Noda S.: Lasing band-edgeidentification for a surface-emitting photonic crystal laser. IEEE Journal on Selected Areas in Communications, vol. 23, no. 7, pp. 1335-1340, July 2005.
  • [31] Koba M., Szczepański P., Kossek T.: Nonlinear Operation of a 2D Triangular Lattice Photonic Crystal Laser. IEEE J. Quantum Electron., vol. 47, no. 1. pp. 13-19, 2011.
  • [32] Plihal M., Shambrook A., Maradudin A. A., Sheng P.: Two-dimensional photonic band structures. Opt. Commun., vol. 80, no. 3-4, pp. 199-204, 1991.
  • [33] Plihal M., Maradudin A. A.: Photonic band structure of two-dimensional systems: The triangular lattice. Phys. Rev. B, vol. 44, no. 16, pp. 8565-8571, Oct. 1991.
  • [34] Kogelnik H.: Coupled wave theory for thick hologram gratings. The Bell System Technical Journal, vol. 48, pp. 2909-2947, Nov. 1969.
  • [35] Vurgaftman I., Meyer J. R.: Design optimization for high-brightness surface-emitting photonic-crystal distributed-feed back lasers. IEEE Journal of Quantum Electronics, vol. 39, no. 6, pp. 689-700, Jun 2003.
  • [36] Kazarinov R., Henry C.: Second-order distributed feedback lasers with mode selection provided by first-order radiation losses. IEEE Journal of Quantum Electronics, vol. 21, no. 2, pp. 144-150, Feb 1985.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0043-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.