PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wavelet-based Entropy Measure for Rate-Distortion Optimization in Image Coding

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel method for calculation of the entropy measure in wavelet space is proposed. This perceived-based entropy measure uses a Second Order Model entropy estimator, in which the occurrence of neighbors is considered in formulation. It has the intention to allow the implementation of a more suitable measure in coding processes and a relationship between the metric and the description of perceptual features. This method is used for the Rate-Distortion optimization in order to improve the bit-allocation coding algorithm, demonstrating that the wavelet-based entropy estimates a truncation step close to the target rate. The hypothesis is founded in the effect of distortion on the coefficient allocation. Because entropy measure is a close approximation of the conditional probability of image in multiresolution space, it provides an adequate representation for the information of a Detail feature. A definition of Detail-based homogeneity variance criteria is used for the information quantity - wavelet representation space, in order to find the image that fits a given Quality Level criteria. Experimental results are obtained for artificial and natural databases.
Twórcy
autor
Bibliografia
  • [1] Taubman D.: High performance scalable image compression with ecbot. IEEE Transactions On Image Processing., vol. 9, no. 7, pp. 1158-1170, 2000.
  • [2] Chang C. I., Du Y., Wang J., Guo S.-M., Thouin P. D.: Survey and comparative analysis of entropy and relative entropy thresholding techniques, in IEE Proceedings Vision, Image and Signal Processing. IEEE, 2006, pp. 837–850.
  • [3] Lei S.-M., Tzou K.-H.: Design of high-order conditonial entropy coding for images, in International Conference on Acustics, Speech, and Signal Processing ICASSP, I. C. Society, Ed., vol. 3, IEEE. IEEE Press, Marz 1992, pp. 473-476.
  • [4] Yun Gao, Ioannis Kontoyiannis, Elie Bienestock: Estimating the entropy of binary time series: Methodology, some theory and a simulation study, Entropy, no. 10, pp. 71-99, 2008.
  • [5] Führ H., Demaret L., Friedric F.: Document and Image Compression. CRC Press, 2006, ch. Beyond wavelets: New image representation paradigms.
  • [6] Bovik P. A. C.: Laboratory for image & video engineering, 2009. [Online]. Available: http://live.ece.utexas.edu/
  • [7] Sheikh H. R., Sabir M. F., Bovik A. C.: A statistical evalaution of recent full reference image quality asessment algorithms. IEEE Transactions on Image Processing, vol. 15, no. 11, pp. 3441-3452, 2006.
  • [8] Garcia-Alvarez J.-C., Castellanos Dominguez C.-G., Ortiz-Jaramillo B.: Image information access using wedgelet filters. IEEE First International Symposium on Applied Sciences in Biomedical and Communication Technologies, October 2008.
  • [9] Ginesu G., Massida F., Giusto D.: A multi-factors approach for image quality assessment based on a human visual system model. Elsevier Signal Processing: Image Communication., no. 21, pp. 316-333, 2006.
  • [10] Suckling J., Parker J., Dance D., Astley S., Hutt I., Boggis C., Ricketts I., Stamatakis E., Cerneaz N., Kok S., Taylor P., Betal D., Savage J.: The mammographic image analysis society digital mammogram database, Exerpta Medica, International Congress Series., vol. 1069 ; database available at http://peipa.essex.ac.uk/info/mias.html pp. 375 378, 1994.
  • [11] Taubman David, Prandolini Robert: Architecture, philosophy and performance of jpip: Internet protocol standard for jpeg2000, vol. 5150. SPIE International Symposium on Visual Communications and Image Processing VCIP2003, July 2003, pp. 649-663.
  • [12] Llinás F. A.: Model-based jpeg2000 rate control methods. Ph.D. dissertation, Universitat Autónoma de Barcelona, Barcelona, Spain, August 2006.
  • [13] Kosheleva O.: On the optimal choice of quality metric in image compression: a soft computing approach, Soft Comput., vol. 8, no. 4, pp. 268-273, 2004.
  • [14] Garcia Julio, Castellanos Germán: Information quantity measure mapped in wavelet space. Fourth International Conference on BroadBand Communications, Information Technology and Biomedical Applications, Wroclaw, Poland.
  • [15] Cabrelli C.: Fractal block-coding: A functional approach for image and signal processing. Elsevier Computers and Mathematics with Applications., no. 44, pp. 1183-1200, 2002.
  • [16] Pulido L. F.: Recuperación de imágenes combinando redes neuronales y wavelets, Master's thesis, Instituto Naciona de Astrofisica, Óptica y Electrónica, Mexico, 2001.
  • [17] Demaret L., Friedrich F., Führ H., Szygowski T.: Multiscale wedgelet denoising algorithms. SPIE 5914, 59140x, 2005.
  • [18] Cheung Ngai-Man, Tang Caimu, Ortega Antonio, Raghavendra Cauligi S.: Efficient wavelet-based predictive slepian-wolf coding for hyperspectral imagery, Elsevier Journal of Signal Processing, no. 86, pp. 3180-3195, 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0041-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.