PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A method for densitometric analysis of moving object tracking in medical images

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work is to develop a method of automatic data collection for coronary blood flow estimation based on computer analysis of angiographic image sequences. In the methods of coronary flow measurements, apart from problems involving densitometric analysis, there is also the problem of cyclic movement of the measurement field, i.e. of an artery segment or part of the myocardium. The system of automatic artery segment tracking presented in this paper does not only reduce the "manual effort" of the operator to establish the region of interest in the frame sequence, but also makes it possible to plot a densitometric curve with the time resolution equal to that of the frame sequence. The algorithm thus implemented, based on a template matching method, makes it also possible to trace the results of automatic detection of some characteristic points within the structure of arteries and to correct any faulty matching. The incorporation of the movement trajectories obtained allows us to trace the movement of the part of the myocardium close to the characteristic points of the artery with the aim of estimating the degree of myocardium perfusion. This relatively simple algorithm is acceptable for routine clinical testing due to the short time of frame sequence analysis (few minutes) and its relatively small error (the maximum estimated error of the automatic analysis is less than 11%). The comparative analysis of the results obtained for the template matching algorithm based on several criteria of similarity failed to establish any specific criterion with regard to acceleration or matching accuracy.
Rocznik
Strony
69--90
Opis fizyczny
Bibliogr. 29 poz., rys., wykr.
Twórcy
Bibliografia
  • [1] Horn B. K. R., Schunck B. G.: Determining optical flow, Artificial Intelligence 17, 185-203, 1981.
  • [2] Gonzalez R. C., Wintz P.: Digital image processing, Addison-Wesley Publishing Company, 1987.
  • [3] Hildreth, E. C.: The analysis of visual motion: from computational theory to neural mechanisra,| Annual Review of Neuroscience, 10, 477-533, 1987.
  • [4] Meunier J., et al.: Analysis of cardiac motion from coronary cineangiograms: Velocity fleld computation and decomposition, SPIE Vol. 1090, Medical Imaging III, Image Formation, 1989.
  • [5] Rong J. H.: Estimation et caracterisation du mouvement en coronarographie. These de doctorat, l'Universite de Rennes I, 1989.
  • [6] Nissen S. E. and Gurley J. C.: Application of indicator dilution principles to regional assessment of coronary flow reserve from digital angiography. In: Reiber JHC and Serruys PW (eds) Quantitative Coronary Angiography. Kluver Academic Publishers 117:245-263, 1991.
  • [7] Young A. A., Hunter P. J., Smaill B. H.: Estimation of epicardial strain using the motions of coronary bifurcations in biplane cineangiography, IEEE Trans. Biomed. Eng., 39 (5), 526-531, 1992.
  • [8] Coatrieux J.-L. i in.: 2D et 3D motion analysis in digital subtraction angiography. Computer Vision, Virtual Reality and Robotics in Medicine, (Ayache N. ed.), Springer, CYRMed, 1995.
  • [9] Rus J. C.: The image processing handbook, CRC Press, Florida, 1995.
  • [10] Benayoun S., Ayache N.: Dense non-rigid motion estimation In Sequence of Medical Images Using Differential Constraints. International Journal of Computer Vision 26 (1), Kluwer Academic Publishers, 25-40, 1998.
  • [11] Buzug T. M., Weese J.: Voxel-Based similarity measures for medical image registration in Radiological Diagnosis and Image Guided Surgery, Journal of Computing and Information Technology -CIT 6, 2, 165-179, 1998.
  • [12] Buzug T. M., Weese J., Strasters K. C.: Motion detection and motion compensation for digital subtraction angiography image enhancement, Philips J. Res. 51, 203-229, 1998.
  • [13] Fei R., Gui L., Merzkirch W.: Comparative study of correlation-based PIV evaluation methods, Machine Graphics & V ision, 8 (4), 572-578, 1999.
  • [14] Guest E., Fidrich M., Kelly S.; Berr, E.: Robust surface matching for registration, 3-D Digital Imaging and Modeling, 1999. Proceedings. Second International Conference on, 169-177, 1999.
  • [15] Meijering E. H. W., Nissen W. J., and Viergeyer M. A.: Retrospective motion correction in digital subtraction angiography: a review, IEEE Trans. Med. Imaging, 18 (1), 2-21, 1999.
  • [16] Meijering E. H. W., Zuiderveld K. J. and Viergever M. A: Image registration for digital subtraction angiography, Int. J. Comput. Vision, 31 (2), 227-246, 1999.
  • [17] Orkisz M., Bourlion M., Gimenez G., Flam T. A.: Real-time target tracking applied to improve fragmentation of renal stones in extra-corporeal lithotripsy, Machine Vision and Applications, vol.11, 138-144, 1999.
  • [18] Wang Y., Erez Vidan E., W. Bergman: Cardiac motion of coronary arteries: Variability in the Rest Period and Implications for Coronary MR Angiography, Radiology, 213:751-758, 1999.
  • [19] Bogorodzki P., Wolak T., Piatkowski A.: Real-Time implementation of the parametric imaging correlation algorithms, 59th ICB Seminar on Recent Deyelopment in MR Imaging, Warsaw, 2000.
  • [20] Bovik A.: Handbook of image&video processing, Academic Press, San Diego, 2000.
  • [21] Konrad J.: Motion detection and estimation, Handbook of Image&Video Processing, ed. Al Bovik, Academic Press, San Diego, 207-225, 2000.
  • [22] Maragos R, Pessoa L. F. C.: Morphological filtering for image enhancement and detection, in. Handbook of ImagefeVideo Processing, ed. Al Bovik, Academic Press, San Diego, 108-110, 2000.
  • [23] Meijering E.: Image Enhacement in digital X-ray angiography, PhD thesis, University Medical Center, Utrecht, 2000.
  • [24] Schrijyer M.: Angiographic image analysis to assess the severity of coronary Ssenoses, Twente University Press, Enschede, Netherlande, 2002.
  • [25] Goszczyńska H.: Computer analysis of coronarographic images for coronary flow calculation (in Polish) PhD Thesis, Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, 2004.
  • [26] Goszczyńska H, Kowalczyk L, Rewicki M.: Clinical study of the coronary flow measurements method based on coronagrographic image sequences. Biocybernetics and Biomedical Engineering (Polish Academy of Sciences) 26:63-73, 2006.
  • [27] Goszczyńska H.: Ekstrakcja cech z sekwencji obrazów koronarograficznych do wieloparametrycznej oceny stopnia upośledzenia przepływu wieńcowego, XV Krajowa Konferencja Biocybernetyki i Inżynierii Biomedycznej, Wrocław, 2007, 87, 1-4, CD.
  • [28] Goszczyńska H.: Movement tracking of artery segment in angiographic sequences by template matching method. In: Computer Recognition Systems 2, M. Kurzynski, E. Puchala, M. Wozniak, A. Zolnierek (Eds.), Advances in soft computing, Springer-Verlag, Berlin, Heidelberg, New York, 621-628, 2007.
  • [29] Goszczyńska H., Rewicki M.: Coronary flow evaluation by densitometric analysis of sequences of coronarographic images, Med. Bio. Eng. Comput., 46:199-204, DOI 10.1007/sll517-007-0288-5, 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0032-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.