PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The challenge of hexahedral meshing of arterial geometry

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes the process of generating a hexahedral mesh of the arterial geometry. From the finite element meshing point of view, arterial geometry may be regarded as a volume assembly in which every segment can be meshed separately except in the shared surfaces. The arterial assembly is made up of three subvolumes: arterial wall, artery lumen and atherosclerotic plaque. A three-dimensional geometric model of each arterial segment has been reconstructed using intravascular ultrasound images (IVUS) and biplane angiographies. Generation of hexahedral meshes for biological models with different physical characteristics usually requires the use of different meshing algorithms for each region. Vessel bifurcations have been modeled by joining the surfaces of the reconstructed segments, using a technique based on NURBS. Therefore, this paper describes the combination of decomposition and meshing techniques required to meet the challenge of generating hexahedral elements for arterial models. A variety of verification algorithms have been used in order to calculate several algebraic quality metrics and assess the quality of the finite element meshes generated.
Rocznik
Strony
35--55
Opis fizyczny
Bibliogr. 21 poz., rys., wykr.
Twórcy
autor
autor
Bibliografia
  • [1] Stephenson M. B., Blacker T. D.: Using conjoint meshing primitives to generale quadrilateral hexahedral elements in irregular regions. In Computers in Engineering, Book No. G0502B; 163-17, 1989.
  • [2] Blacker T. D. Paving: A new approach to automated quadrilateral mesh generation. Internatior Journal for Numerical Methods in Engineering; 32:811-847, 1991.
  • [3] Tam T. K. H., Armstrong C. G.: 2d finite element mesh generation by medial axis subdivision. vances in Engineering Software; 13: 313-324, 1991.
  • [4] Blacker T. D., Meyers R. J.: Seams and wedges in plastering: a 3d hexahedral mesh generation algrithm. Engineering with Computers; 2: 83-93, 1993.
  • [5] Price M. A., Armstrong C. G.: Hexahedral mesh generation by medial surface subdivision: Part solids with convex edges. International Journal for Numerical Methods in Engineering; 38 (19): 3335-3359, 1995 .
  • [6] White D. R., Mingwu L., Benzley S. E., Sjaardema G. D.: Automated hexahedral mesh generatio by virtual decomposition. In Proceedings, 4th International Meshing Roundtable, Sandia Nationa Laboratories. Albuquerque, NM; 165-176, 1995 .
  • [7] Chiba N., Nishigaki L, Yamashita Y., Takizawa C., Fujishiro K.: An automatic hexahedral megeneration system based on the shape-recognition and boundary-fit methods. In Proceedings, 5th International Meshing Roundtable, Sandia National Laboratories. Albuquerque, NM; 281-290, 1996.
  • [8] Price M. A., Armstrong C. G.: Hexahedral mesh generation by medial surface subdivision: Part II solids with flat and concave edges. International Journal for Numerical Methods in Engineerin 40: 111-136, 1997.
  • [9] Perktold K., Hofer M., Rappitsch G., Loew M., Kubań B. D., Friedman M. H.: Validated computation of physiologic flow in a realistic coronary artery branch. Journal of Biomechanics; 31 (3): 217-228, 1998.
  • [10] Taylor C. A., Hughes T. J ., Zarins C. K.: Finite element modeling of blood flow in arteries. Comput. Methods in Applied Mechanics and Engineering; 158 (1):155-196, 1998.
  • [11] Mingwu L., Benzley S. E., White D. R.: Automated hexahedral mesh generation by generalized multiple source to multiple target sweeping. International Journal for Numerical Methods in Engineerin 49: 261-275, 2000.
  • [12] Schneiders R.: Octree-based hexahedral mesh generation. International Journal of Computationa Geometry & Applications; 10 (4): 383-398, 2000.
  • [13] Sheffer A., Bercovier M.: Hexahedral meshing of non-linear volumes using yoronoi faces and edge International Journal for Numerical Methods in Engineering; 49: 329-351, 2000.
  • [14] Bayne J, et al.: SOFTIMAGE XSI version 2.0, modeling and deformations. Avid Technology: Canada, 2001 .
  • [15] Lu Y., Gadh R., Tautges T. J.: Feature based hex meshing methodology: feature recognition and jvolume decomposition. Computer Aided Design; 33 (3):221-232, 2001.
  • [16] Antiga L., Ene-Iordache B., Caverni L., Cornalba G. P., Remuzzi A.: Geometry reconstruction for computational mesh generation of arterial bifurcations from et angiography. Computerized Medical Imaging and Graphics; 26 (4): 227-235, 2002.
  • [17] Knupp P. M.: Algebraic mesh quality metrics. SIAM Journal on Scientific Computing; 23 (1):193-218, 2002
  • [18] Antiga L., Ene-Iordache B., Remizzi A.: Computational geometry for patient-specific reconstruction and meshing of blood vessels from mr and ct angiography. IEEE Transactions on Medical Imaging, 22 (5): 674-684, 2003.
  • [19] Rotger d., Rosales M., Garcia J., Pujol O., Mauri J., Radeva.: Active vessel: A new multimedia workstation for ivus and angiography fusion. In Proceedings, Computers in Cardiology, 2003.
  • [20] Calvo F., Gabaldon F.: Finite method for stationary blood flow in both healthy and stenotic compliant Vessels. 14th Conference of the European Society of Biomechanics (ESB2004).
  • [21] The CUBIT Geometry and Mesh Generation Toolkit. Sandia National Laboratories. http://cubit.sandia.gov/cubit.html, 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0032-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.