PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computer-aided interpretation of medical images: mammography case study

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the current limitations and challenges of computer-aided interpretation of radiological examinations. The analysis and the proposed improvements in interpretation arose from our experience, knowledge and observations with the collected suggestions and conclusions. The emphasized topics are as follows: computer understanding of human determinants of diagnosis, characteristics and enhancement of observer performance, diagnostic accuracy measures of image examinations, computer-aided diagnosis (CAD) systems, and numerical description of medical image-based content. All of these diagnosis support concepts can be integrated into an intelligent diagnosis interface and enhanced, basing on a formal description of semantic image content, i.e. ontology implied as a reliable, dynamic platform of medical knowledge, useful for diagnosis. CAD for mammography and content-based image indexing supported by the ontology were integrated for the needs of an enhanced diagnostic workstation applied in tele-information medical systems. A design of an effective human-machine interface has arisen as the leading problem of the current challenges.
Rocznik
Strony
347--375
Opis fizyczny
Bibliogr. 43 poz., il., tab., wykr.
Twórcy
autor
autor
  • Institute of Radioelectronics, Nowowiejska 15/19 Str., 00-665 Warsaw, Poland
Bibliografia
  • [1] Garland L. H.: Clinical and laboratory observer variations. The Journal of New Drugs, 1, 65-71, 1961.
  • [2] Starr S. J ., Metz C. E., Lusted L. B., Goodenough D. J.: Visual detection and localization of radio-graphic images. Radiology, 116, 533-538, 1975.
  • [3] Sickles E. A.: Mammographic features of 300 consecutive nonpalpable breast cancers. AJR Am. J. Roentgenol., 146(4), 661-663, 1986.
  • [4] Chakraborty D., Winter L.: Free-response methodology: alternate analysis and a new observer-performance experiment. Radiology, 174(3), 873-881, 1990.
  • [5] Cosman P. C., Gray R. M., Olshen R. A.: Evaluating quality of compressed medical images: SNR, subjective rating, and diagnostic accuracy. Proc IEEE, 82, 919-932, 1994.
  • [6] Baker J. A., Kornguth P. J., Floyd C. E.: Breast imaging, reporting and database system standardized mammography lexicon: observer variability in lesion description. AJR 1996, 166, 773-778, 1996.
  • [7] Ester M., Kriegel H. P., et all.: A density-based algorithm for discovering clusters in large spatial databases with noise. Proc. 2nd Conf. on Knowl. Discovery and Data Mining, 1996.
  • [8] Kaplan B., Lundsgaarde, H. P.: Toward an evaluation of an integrated clinical imaging system: Identifying clinical benefits, Methods Inform. Med., 35, 221-229, 1996.
  • [9] American College of Radiology. Breast imaging and reporting and database system (BI_RADS). 3nd ed. Reston, VA: ACR, 1997.
  • [10] Starren J., Johnson S. M.: Expressiveness of the breast imaging reporting and database system (BI_RADS), JAMIA 1997 Suppl. S, 665-9.
  • [11] Perlmutter S. M., Cosman P. C., Gray R. M., et al.: Image quality in lossy compressed digital mammograms. Signal Proces., 59, 189-210, 1997.
  • [12] von Kummer R., Allen K. L. et al.: Acute stroke: usefulness of early CT findings before thrombolytic therapy. Radiology, 205, 327-333, 1997.
  • [13] Kerlikowske K., Grady D., Barclay C., et al.: Variability and accuracy in mammographic interpretation using the American College of Radiology breast imaging reporting and database system. Journal of the National Cancer Institute, 90(23), 1801-1909, 1998.
  • [14] D'Orsi C. J., Kopans D. B.: Mammogarphic feature analysis. Seminars in Roentgenology, 28, 204-229, 1998.
  • [15] Dziukowa J.: Mammography-based diagnosis of breast cancer (in Polish). BEL CORP Scientific Publ. Co. Warszawa, 1998.
  • [16] Lado M. J., Tahoces P. G., et all.: A wavelet-based algorithm for detecting clustered microcalcifications in digital mammograms. Med. Phys. 26, 1294-1305, 1999.
  • [17] Netsch T., Peitgen H. O.: Scale-space signatures for the detection of clustered microcalcifications indigital mammograms. IEEE Trans. Medical Imag. 18(9), 774-86, 1999.
  • [18] Lev M. H., Farkas J. et al.: Acute stroke: improved nonenhanced CT detection - benefits of soft-copy interpretation by using variable window width and center level settings. Radiology, 213, 150-155, 1999.
  • [19] Brawn R.: The formal and the intuitive in science and medicine. In: Atkinson T., Claxton G., eds. The intuitive practitioner. Buckingham: Oxford University Press, 150-163, 2002.
  • [20] Sikora T.: The MPEG-7 visual standard for content description - an overview. IEEE Trans Circuits and Systems for Video Technology, 11(6), 696-702, 2001.
  • [21] Elmore J. G., Miglioretti D. L., Reisch L. M., et al.: Screening mammograms by community radiologists: variability in false-positive rates. J. Natl. Cancer Inst., 94, 1373-1380, 2002.
  • [22] Gadda D., Vannucchi L. et al.: CT in acute stroke: improved detection of dense intracranial arteries by varying window parameters and performing a thin-slice helical scan. Neuroradiology, 44, 900-906, 2002.
  • [23] Antani S., Long L. R., Thoma G. R.: A biomedical information system for combined content-based retrieval of spine X-ray images and associated text information, in: Proceedings of the Third Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP 2002), Ahamdabad, India.
  • [24] Demirkazik F. B., Gulsun F., Firat P.: Mammographic features of nonpalpable speculated lesions. Clin Imaging, 17(5), 293-729, 2003.
  • [25] Jain P., Merchant S. N.: Wavelet based multiresolution histogram for fast image retrieval. TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region, 2, 581- 85.
  • [26] Przelaskowski A.: Diagnostic accuracy measures of lossy compressed mammograms. Proc First International ICSC-NAISO Symposium on Information Technologies in Environmental Engineering ITEE, 49-55, 2003.
  • [27] Pisanelli D. M., Zaccagnini D., Capurso L., Koch M.: An ontological approach to evidence-based medicine and meta-analysis, in proc. Medical Informatics Europe 2003, IOS Press.
  • [28] Horsch A., Thurmayr R.: How to identify and assess tasks and challenges of medical image processing. In: Baud R., Fieschi M., Le Beux P., Ruch P. (Eds.): The new navigators: from Professionals to Patients (Proc MIE 2003 in Saint-Malo, France, May 4-7, 2003), Stud Health Technol Inform, 95, 281-5.
  • [29] Maedche A.: Ontology learning for the semantic Web, Kluwer Academic Publishers, 2003.
  • [30] Tadeusiewicz R.: Automatic understanding of signals, [in:] Intelligent Information Processing and Web Mining, proc. of the International Intelligent Information Systems, HPWM'04 Conference, Zakopane 2004, Springer-Verlag, Berlin-Heidelberg-New York.
  • [31] Tadeusiewicz R., Ogiela M.: Medical image understanding technology : artificial intelligence and sott-computing for image understanding, Springer-Verlag, Berlin—Heidelberg—New York, 2004 - VIII, 156 p. - (Studies in Fuzziness and Soft Computing ; vol. 156).
  • [32] Przelaskowski A.: Vector quality measure of lossy compressed medical images. Computers in Biology and Medicine 34(3), 193-207, 2004.
  • [33] Pisanelli D. M., Gangerni A.: If ontology is the solution, what is the problem, Ontologies in Medicine vol. 102 in Studies in Health Technology and Informatics, IOS Press, 2004.
  • [34] Muller H., Michoux N., Bandon D., Geissbuhler A.: A review of content-based image retrieval systems in medical applications—clinical benefits and future directions, International Journal of Medical Informatics, 73, 1-23, 2004.
  • [35] Przelaskowski A., Wałecki J., Szerewicz K., Bargiel P.: Acute stroke detection in unenhanced CT exams: perception enhancement by multiscale approach. Proc. National Conference "Physics and engineering in the present medicine and health care - the challenges to Poland as a new European Union member", 94-95, 2005.
  • [36] Podsiadly-Marczykowska T., Guzik A.: Mammography ontology, model structure, definitions and conception instances. Bio-Algorithms and Med.—Systems, 1(1), 247-252, 2005.
  • [37] Wroblewska A., Przelaskowski A., Bargiel P., Boninski P.: Two stage detection and clustering of microcalcifications in mammograms. Biomedizinische Technik, Medical Physics, 50(supp 1), 56-57, 2005.
  • [38] Ogiela M., Tadeusiewicz R.: Nonlinear processing and semantic content analysis in medical imaging - a cognitive approach. IEEE Trans. Instrum Measurm, 54(6), 2149-2155, 2005.
  • [39] Uren V., Cimiano P., Iria J. et al: Semantic annotation for knowledge management: requirements and a survey of the state of the art. Journal of Web semantics, 4(1),14-28, 2006.
  • [40] Andriole K. P., Morin R. L.: Transforming medical imaging: the first SCAR TRIP™ Conference. Journal of Digital Imaging 19(1), 2006.
  • [41] Boniński P., Przelaskowski A., Halasa P.: Image Shark - PACS-CBIR integrated system with interactive image transmission using JPEG2000, Me-e-Tel 2006, The International Trade Event and Conference for eHealth, Telemedicine and Health ICT, Luxemburg, 2006.
  • [42] Boniński P., Przelaskowski A.: Local wavelet features for content-based image retrieval in medical domain. "New trends in audio and video", vol. 1, 163-169, Rozprawy Naukowe Nr 134, Politechnika Białostocka, 2006.
  • [43] Podsiadly-Marczykowska T., Przelaskowski A., Wroblewska A., Boniński P.: A framework for integrated, diagnosis supporting interface for mammograms description - advantages and pitfalls. Proc. Human- Computer Interaction, Chamonix, France, 14-16.03, 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0031-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.