PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A connected component labelling algorithm for greyscale mammography image processing as a pre-processing tool

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new algorithm for connected component-labelling is presented in this paper. The proposed algorithm requires only one scan through an image for labelling connected components. Once this algorithm encounters a starting pixel of a component, it traces in full all the contour pixels and all internal pixels of that particular component. The algorithm recognizes components of the image one at a time while scanning in the raster order. This property will be useful in areas such as image matching, image registration, content-based information retrieval and image segmentation. It is also capable of extracting the contour pixels of an image and storing them in a clock-wise directional order, which will provide useful information in many applications. The algorithm assigns consecutive label numbers to different components, and therefore requires a minimum number of labels. We have used the algorithm in mammography image processing as a pre-processing tool, and have demonstrated the possibility of using it for breast tissue segmentation and for detecting regions of interest in breast tissue. Another important advantage of the algorithm is that it can be used as a content-based image retrieval tool for retrieving images based on the visual contents of a given image. This would be very useful in retrieving related images from large scale medical databases.
Rocznik
Strony
305--327
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
autor
Bibliografia
  • [1] Rosenfeld A., Pfaltz J. L.: Sequential operations in digital processing, Journal of ACM. Vol. 13, pp 471-494, 1966.
  • [2] Haralick R. M.: Some neighborhood operations. Real Time/Parallel Computing Image Analysis, Plenum Press, New York, pp 11-35, 1981.
  • [3] Lumia R., Shapiro L., Zuniga O.: A new connected-components algorithm for virtual memory computers. Computer Vision Graphics and Image Processing. Vol. 23, pp 207-217, 1983.
  • [4] Witkin A.: Scale-space filtering. Proc. in Int. Joint Conf. Artificial Intell. Karsruhe, West Germany. Morgan-Kaufmann Palo Alto, California, 1983.
  • [5] Johns P. C., and Yaffe M. J.: X-ray characterization of normal and neoplastic breast tissue. Phys. Med. Biol. (32), pp 675-695, 1987.
  • [6] Hashizume A., Suzuki R., Yolouchi H.: An algorithm of automated RBC classification and its evaluation. Bio Medical Engineering, vol. 28(1), pp 25-32, 1990.
  • [7] Lindeberg T.: Scale-space theory in computer vision. Kluwer Academic Publishers, 1994.
  • [8] Abdel-Mottaleb M., Carman C.: Locating the boundary between the breast skin edge and the background in digitized mammograms, In Digital Mammography, pp 467-470, 1996.
  • [9] Fiorio C., and Gustedt J.: Two linear time union - find strategies for image processing. Theoretical Computer Science, Vol. 154(2), pp 165-181, 1996.
  • [10] Mendez A., Tahoces P.: Automatic detection of breast border and nipple in digital mammograms. In Computer Methods and Programs in Biomedicine, Vol. 49, pp 253-262, 1996.
  • [11] Jung-Me P., Carl G. Looney, Hui-Chuan C.: Fast connected component labeling algorithm usinga divide and conqure technique, CATA 2000 Conference on Computers and Their Applications, pp 373-376.
  • [12] Wirth M. A.: A non-rigid approach to medical image registration: Matching images of the breast. Ph.D. Thesis. RMIT University, Melbourne, Australia, 2000.
  • [13] Christoyianni I., Dermatas E., Kokkinakis G.: Automatic detection of abnormal tissue in mammography. In Proc. International Conference on Image Processing, Vol. 2, pp 877-880, 2001.
  • [14] Gonzalez R. C., and Woods R. E.: Digital image processing (second edition). Prentice Hall, 2002.
  • [15] Suzuki K., Isao H., and Noboru S.: Linear - time connected - component labeling based on sequencial local operations. Computer Vision and Image Understanding 89(1). pp 1-23, Acedemic Press, 2003.
  • [16] Chang F., Chun-Jen C., Chi-Jen L.: A linear - time component - labeling algorithm using contour tracing technique. Computer Vision and Image Understanding, 93(2), pp 206-220, Elsevier Science Inc., 2004.
  • [17] David R., Arnau O., Joan M., Marta P., and Joan E.: Brest segmentation with pectoral muscle suppresion on digital mammograms. In Proc. Iberian Conference on Pattern Recognition and Image Analysis, Vol. 2, pp 471-478, 2005.
  • [18] Kesheng W., Ekow O., and Arie S.: Optimizing connected component labeling algorithms. In Proceedings of SPIE Medical Imaging Conference, pp 1965-1976, 2005.
  • [19] Raba D., Oliver A., Marti J., Peracaula M., Espunya J.: Breast segmentation with pectoral muscle suppression on digital mammograms. lecture notes in computer science, Springer-Verlag, pp 471-478, 2005.
  • [20] Bankman I. N., Nizialek T., Simon I., Gatewood O. B., Weinberg I. N., Brody W. R.: Algorithms for segmenting small low-contrast objects in mammogram. (Chapter 21) Recent Advances in Breast Imaging, Mammography, and Computer-Aided Diagnosis of Breast Cancer. SPIE Press Washington USA, 2006.
  • [21] Jasjit S., Suri, Rangayyan R. M.: Recent advances in breast imaging, Mammography, and Computer-Aided Diagnosis of Breast Cancer. SPIE Publication, 2006.
  • [22] Digital mammography database ver 1.2. The Mammographic Image Analysis Society, 2006, (http://www.wiau.man.ac.uk/services/MIAS/MIASweb.html).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0031-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.