PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Medical image compression and analysis using wavelet modulus maxima decomposition

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A method of highly effective biomedical image compression that includes the reconstruction process with a good convergence rate is presented in the paper. It represents an image in the form of its wavelet modulus maxima decomposition. The technique allows the compressed image representation to include only those wavelet transform coefficients that correspond to the wavelet transform modulus maxima that are determined for each resolution level. The proposed approach to analysis of medical images uses the wavelet modulus maxima decomposition to enhance image features that are not visually apparent. The transient behavior of pixel intensities (that corresponds to edges and singular points) is used for image enhancement. The detection of edges is realized by detecting modulus maxima in a two-dimensional dyadic wavelet transform at the proper scale. This approach to image analysis aims at determining structures of the diseased tissue that are represented by the image edges. It is expected that this technique will help with early detection of cancer when routine interpretation of CT scans is inconclusive and biopsy would be required.
Rocznik
Strony
221--235
Opis fizyczny
Bibliogr. 21 poz., il., wykr.
Twórcy
Bibliografia
  • [1] Marr D.: Vision, W. H. Freeman and Co., San Francisco, 1982.
  • [2] Holschneider M., Kronland-Martinet R., Morlet J., Tchamitchian P.: Wavelets, time-frequency methods and phase space, chapter: A real-time algorithm for signal analysis with the help of the wavelet transform, Springer-Verlag, Berlin, 289-297, 1989.
  • [3] Antonini A., Barlaud M., Mathieu P., Daubechies I.: Image coding using wavelet transform, IEEE Trans. Image Proc., 1(2), 205-20, 1992.
  • [4] DeVore R. A., Jawerth B., Lucier B.J.: Image compression through wavelet transform coding, IEEE Trans. Inf. Theory, 1992 (38), 719-46, 1992.
  • [5] Lewis A., Knowles G.: Image compression using 2-D wavelet transform, IEEE Trans. Image Proc. 1(2), 244-50, 1992.
  • [6] Mallat S., Zhong S.: Characterization of signals from multiscale edges, IEEE Trans. Patt. Anal, and Mach. Intell., 14(7), 710-732.
  • [7] Mallat S., Hwang W. L.: Singularity detection and processing with wavelets, IEEE Trans. Inf. Theory, 38(2), 617-643, 1992.
  • [8] Gröchenig K.: Acceleration of the frame algorithm, IEEE Trans. Signal Proc., 41(12), 3331-3340, 1993.
  • [9] Shapiro J.: Embedded image coding using zero trees of wavelet coefficients, IEEE Trans. Signal Proc., 41(12), 3445-62, 1993.
  • [10] Unser M., Aldroubi A.: A review of wavelets in biomedical applications, Proc. IEEE, 1996 (84), 626-638, 1996.
  • [11] Adams C. N., Cosman P. C., Fajardo L., Gray R. M., Ikeda D., Olshen R. A., Williams M.: Evaluating quality and utility of digital mammograms and lossy compressed digital mammograms, Proceedings of the Workshop on Digital Mammography, Amsterdam, Elsevier, 169-76, 1996.
  • [12] Said A., Pearlman W. A.: An image multiresolution representation for lossless and lossy image compression, IEEE Trans. Image Proc, 5(9), 1303-10, 1996.
  • [13] Kicey C. J., Leonard C. J.: Unique reconstruction of band-limited signals by a Mallat-Zhong wavelet transform algorithm, Fourier Analysis and Appl., 3(1), 63-82, 1997.
  • [14] Perlmutter S. M., Cosman P. O., Gray R. M., Olshen R. A., Ikeda D., Adams C. N., Betts B. J., Williams M. B., Perlmutter K. O., Li J., Aiyer A., Fajardo L., Birdwell R., Daniel B. L.: Image quality in lossy compressed digital mammograms, Signal Processing (special issue on medical image compression), 59(2), 189-210, 1997.
  • [15] Carey W. K., Chuang D. B., Hemami S.S .: Regularity-preserving image interpolation, IEEE Trans. Image Proc., 8(9), 1293-1297, 1999.
  • [16] Donoho D., Duncan M. R., Huo, X., Levi, O.: Wavelab 802 for MATLAB 5.x [Library of MATLAB software programs], http://www-stat.stanford.edu/~wavelab, 1999.
  • [17] Mallat S.: A wavelet tour of signal processing, Academic Press, 1999.
  • [18] Usevitch B. E.: A tutorial on modern lossy wavelet image compression: Foundations of JPEG 2000, IEEE Signal Processing Magazine, 23-35.
  • [19] Rosen Y., Lenkinski R.E.: The Recent advances in magnetic resonance neurospectroscopy, Neu-rotherapeutics, 27 (3), 330-45, 2007.
  • [20] Golder W.: Magnetic resonance spectroscopy in clinical oncology. Onkologie, 27 (3), 304-09, 2007.
  • [21] Xiong C., Tian J., Liu J.: Efficient architectures for two-dimensional discrete wavelet transform using lifting scheme, IEEE Trans. Image Processing, 16(3), 607-614, 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0031-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.