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ABSTRACT 

A new approach to the theory of excess current carrier distribution in the homogeneous base 
region of the semiconductor multi-junction structure is proposed. Numerical analysis of this 
structure is performed taking into consideration an assumption that concentrations of excess 
electrons and holes in the semiconductor are equal (the neutrality principle). To obtain excess 
carrier distributions in this structure it is necessary to solve continuity equations of electron  Jn  
and hole Jp current densities. A general solution is obtained and numerically calculated 
distributions of excess carriers and electrical potential for cases interesting from the point of 
view of their application in injection modulated thermal radiation structures destined for 
dynamic scene projectors are presented. 

1. Introduction 

A basic structure which is able to produce excess 
current carriers in the semiconductor structure is the 
p-n junction. Amongst many works published in 
early stage of the development of semiconductor 
science and technology one can distinguish 
publications of Sosnowski et al. [1, 2] concerning PbS 
rectifying structure. 

In 1948 Shockley published his crucial one-
dimensional (1D) theory of the p-n junction [3] and 
this theory is now generally accepted as a basis of all 
works in which p-n junction appears. All ideas 
presented in his theory still hold true due to his 
invention and description of phenomena appearing in 
this junction.  

In our work we consider three-dimensional (3D) 
distribution of  carriers injected to the base by the p-n 
junction polarized in the forward direction. To 
formulate proper and generally right current carrier 
transport equations it is necessary to use W. van 
Roosbroeck formalism [4] where he introduced 
a quasi-neutrality principle as well as potential Ψ 
which become a basis for the three-dimensional 
theory of the p-n junction.  

In the paper there is presented a theory enabling to 
calculate a distribution of excess carrier 
concentration Δp(x,y,z) in the arbitrary formed block 
of the n-type homogeneous semiconductor supplied 
with the arbitrary distributed p+ or n+ electrodes 
placed at its surface. For all particular cases boundary 

conditions are formulated. Transport equations based 
on W. van Roosbroeck formalism make possible to 
use time non consuming numerical methods of 
calculations. Infrared radiation emitting devices 
made of germanium cover the transmission band of 
8 – 12μm wavelength and are described in 
publications [5−8]. Emitters of injection modulated 
thermal radiation can also be made of silicon 
which is an advantageous semiconductor because 
of its very well developed technology, however it 
is necessary to remember that the free carrier 
absorption coefficient in silicon is smaller than in 
germanium [9]. 

A very important question in the development of 
the semiconductor p+-n-n+ structures, especially 
emitting IR injection modulated radiation, is 
determination of an exact excess carrier distribution 
in the base region. This can help to obtain an efficient 
radiation from the structure as well as to avoid so 
called cross-talk effect when structures are integrated 
and form an array. These problems are also a subject 
of the presented paper. 

 

2. Distributions of excess current carriers 
Δp and electrical potential ψ  in an 
homogeneous base of the p+-n-n+  junction 
structure 

In the work a semiconductor structure of a general 
form presented in Fig. 1 is considered. The structure 
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is formed of an homogeneous n-type semiconductor 
supplied with the p+-n and n-n+ junctions.  

 
Excess current carrier transport equation in the 
n-region of the structure 

 

Let us consider a block of an homogeneous n-type 
semiconductor with equilibrium concentrations of 
electrons n0 = const and holes p0 = const. In the ab and 
cd parts of the surface there are situated p+-type and n+-
type layers, respectively. In general it is possible to 
consider more of such electrodes. When the current 
flows in the volume between ab and cd electrodes there 
are excess carriers (holes and electrons) “created” due to 
the work of the p-n junction (ab). 

Transport equations of excess carriers in the 
homogeneous semiconductor were derived by W. van 
Roosbroeck in the work [4]. In this work he used the 
quasi-neutrality principle which postulate that excess 
concentrations of holes Δp and electrons Δn are equal 

 

Δp = Δn.                             (1) 
 

For the simplicity of further calculations we will 
use only the symbol Δp. Thus we can state that total 
concentrations of electrons n and holes p are 

n = n0  + Δp,                             (2) 
p = p0 + Δp                              (3) 

 

and the total conductivity is: 
 

σ = σ0 + q (μn +μp) Δp.                  (4) 
 

The current carrier transport is determined by 
continuity equations of electron nJ

r
 and hole pJ

r
 

currents. 
Since in the stationary case a density of the space 

charge is equal to zero, then the total current fulfils 
the equation 

0=Jdiv
r

.                             (5) 
If there is no external generation of current 

carriers, then excess current carriers density Δp is 
connected with pJdiv

r
 (or nJdiv

r
) and with the 

lifetime τ of excess carriers by: 
 

)]}/([1){/( 00 pnppJdivJdiv np +Δ+Δ−=−= τ
rr

(6) 
It is necessary to mention that the recombination 

rate is characterized here by one parameter τ  only 
(lifetime of excess carriers) which is reasonable in 
case of direct recombination, but in case of indirect 
recombination (through recombination centers) can 
be only an approximation. 

To formulate a set of two equations, which will be 
a base for numerical calculations, it is necessary to 
describe more closely currents nJ

r
 and pJ

r
. For this 

reason we have to choose proper of unknown values. 
These values are excess carrier concentrations Δp and 
potential Ψ, which will be discussed later. 

When the principle of quasi-neutrality is fulfilled, 
we can introduce potential Ψ  in the following form 
given by W. van Roosbroeck [4] 

 

Ψ  = V − 
0

ln
σ
σ

μμ
μμ

pn

pn

q
kT

+
−

              (7) 

 

where: V − electrostatic potential; k − Boltzmann 
constant; T − absolute temperature, q − elementary 
charge; μn, μp − electron and hole velocities; σ − 
− total conductivity; σ0 − equilibrium conductivity, 
when Δp = 0. 

Applying potential Ψ we obtain a very convenient 
formula for the total current 

 

ψσ gradJ −=
r

                       (8) 
 

while the hole current is expressed by the formula 
 

pgradDqgradJ p Δ−−= ψσ
r

          (9) 
 

which evidently shows ohmic and diffusion compo- 
nents due to introduction of the ambipolar diffusion 
coefficient 

n
p

p
n DDD

σ
σ

σ
σ

+=                (10) 
 

where: Dp, Dn – hole and electron diffusion coef- 
ficients. 

The obtained till now results permit to formulate 
an equation which fulfils potential Ψ (x,y,z) and 
concentration Δp(x,y,z). Combining Eqs. (5) and (8) 
we get a following shape of the first continuity 
equation 

 

0)( =ψσ graddiv                        (11) 
 

where σ is given by Eq. (4). 
The second continuity equation is obtained  after 

substituting Eqs. (9) to (6) 
 

)1()(
00 pn

ppgradpgradDqdiv p +
Δ

+
Δ

=+Δ
τ

ψσ

(12) 
where: 

Fig. 1. General scheme of the p+-n-n+ structure. 
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pq ppp Δ+= μσσ 0                   (13) 
 

while D is given by (10). 

3. Boundary conditions 

Basic Eqs. (11) and (12) fulfilling unknowns 
Δp(x,y,z) and Ψ (x,y,z) demand formulation of 
boundary conditions which should be satisfied by 
these functions or their derivatives. 

3.1. Boundary conditions on the free 
surface bc, ad 

a) A general condition concerning Δp 
 

This condition is following: 
 

pspgradnD Δ=Δ−
r

                   (14) 
 

where nr  – unit normal vector, s (ms−1) – surface re- 
combination velocity. 

The above formula is derived in App. A1. 
To evaluate an influence of the surface 

recombination on the investigated construction 
performance it is necessary to consider two extreme 
conditions: s = 0 and s = ∞. 

In the first case 
0=Δpgradnr ,  s =  0,                (15) 

 

that means that normal component of grad Δp is 
equal to zero. 

In the second case 
Δp = 0, s = ∞ .                        (16) 

 

It is clear that particular parts of the surface could 
have different recombination properties. 

 
b) A boundary condition concerning potential ψ 

 

A total current density must be parallel to the 
surface (free surface without electrodes), namely 

0=nJ r
r

. Thus taking into consideration Eq. (8) we 
can write 

0=ψgradnr                         (17) 
which means that normal component of grad ψ  must 
be equal to 0, not depending on s. 

3.2. Boundary conditions concerning electrode n+ 

(presented separately in Fig. 2) 

a) A boundary condition concerning Δp 
 

This condition is identical to the repeated here 
recombination condition (14) 

 

pspgradnD Δ=Δ−
r

                 (18) 
 

It should be reasonable to discuss also such cases 
as given by formulae (15) and (16). 

 

Rewriting them we have 
 

0=Δpgradnr      when  s = 0         (19) 

and 
0=Δp when ∞=s .              (20) 

 
b) A boundary condition concerning ψ 

 

It is necessary to decide if potential of the 
electrode n+ is here a reference potential. If it is, then 
it means that 

 

ψn+ = const.                           (21) 
 

The simplest assumption is const = 0.  In this case 
potential of the electrode p+ will have simultaneously 
a value of the voltage applied to the structure if we 
admit that the potential drop in the layer p+ is 
negligible. 

3.3. Boundary conditions for the electrode p+ 
(surface ab) 

a) A boundary condition concerning potential ψ 
 

Let us assume that the surface ab of the p+-n junction 
(Fig. 3) is perpendicular to the z-axis in the point 

z=0. Through all this surface flows in to the structure 
a total current of a constant density −J k

r
( k
r

 − unit 
vector of axis z). Then according to (8) potential ψ  in 
the vicinity of the surface (z = − 0) will fulfil a con- 
dition  

 
 

k
v
× grad ψ = 0.                      (22) 

 
Notice that conditions (21) and (22) concern both 

electrodes having constant potential. First of them 
determines a value of the potential and the second its 
derivative, because a value of the potential can be 
imposed in one case only. If necessary above 
conditions can be exchanged. 

Fig. 3. p+-n  junction 

Fig. 2. n-n+ base junction 
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b) A boundary condition concerning carrier 
concentration Δp(−0) 

A determination of the carrier concentration under 
the surface ab demands longer calculations as it is 
shown in App. A2. The result is following: 

=−Δ )0(p

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
−+

+
−

+ )0(
)0()0()0(

0

0

p
n

L
D

L
Dq

J

efpn

(23) 

where: Ln − diffusion length of excess carriers in n-re- 
gion, 

efp
L +  − effective diffusion length of excess 

carriers in p+-region, n0  − equilibrium electron con- 
centration in n-region, p0 − equilibrium hole con- 
centration in p+-region, D(−0) − diffusion coefficient 
of excess carriers in n-region, D(+0) − diffusion 
coefficient of excess carriers in p+-region. 

Both values of diffusion lengths are taken in the 
vicinity of the p-n junction. 

An effective diffusion length 
efp

L + means that 
there is taken into account an influence of the surface 
recombination at cd (Fig. 3). If the value of 

efp
L +  is 

not to small and the ratio of n0(−0)/p0(+0) is small 
from the assumption, formula (23) can be simplified 

)0(
1)0(

−
=−Δ

D
L

J
q

p n .               (24) 

4. Calculations of charge carrier and 
potential distributions 

Using the above presented theory there were 
considered following structures: 
a) a structure with p+-n and n-n+ junctions in the 

form of stripes situated on the top and bottom 
surface of the silicon wafer (Fig. 4), 

b) a structure formed of p+-n junctions in the form 
of stripes situated on the top surface of the wafer 
and the n-n+ contact covering all the bottom 
surface of the wafer (Fig. 5). 

These structures correspond to our running works 
concerning a development of the construction and 
technology of silicon edge radiating sources (radiat- 
ing in the direction parallel to the surface of the 
wafer).  

Calculations were performed for the structure 
made of n-type silicon with the equilibrium 
concentration of electrons n0 = 5⋅1011 cm−3 (resistivity 
ρ ≈ 9 kΩ⋅cm), the lifetime of excess carriers τ = 300 μs 
and the temperature T = 300 K. 

Fig. 6 Contour distribution of excess current carriers in the 
base (a), distribution of excess current carriers under the p+-n 
junction along the base thickness (b) and on the base top 
surface (c) of the structure shown in Fig. 4. 

a) 

b) 

c) 
Fig. 4. Structure with p+-n and n-n+ junctions in the form of
stripes situated on the top and bottom surfaces of the silicon
wafer.  

Fig. 5. Structure with p-n+ junctions in the form of stripes
situated on the top surface of the wafer and the n-n+ junction 
covering all the bottom surface of the wafer. 
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Numerical calculations were performed solving 
partial Eqs. (11) and (12) by the method of finite 
elements with the system FlexPDE, version 4. In 
these calculations were used complete boundary 
conditions for the concentration of excess current 
carriers and electrical potential in forms given by 
Eq. (14), (21) and (22). Results of these cal- 
culations for considered structures are presented in 
Figs. 6–9 where distributions of excess carriers and 
of the potential in their bases are shown. 

In the integration of IR radiating sources there 
arise a problem of their approaching. To determine an 
optimal configuration of neighbouring junctions  
from the point of view of the cross-talk there were 
calculated integrals of excess carrier distributions 
determined along the line in the half of the distance 
between these junctions. Results of these calculations 
for considered structures are shown in Fig. 10. From 
this picture it is evident that the shape of the bottom n+  
electrode has a very small influence on the distribution 

Fig. 7. Contour distribution of the electrical potential in the
base (a), distribution of the electrical potential along the base
thickness (b) and on the top surface (c) of the structure shown 
in Fig. 4. 

Fig. 8. Contour distribution of excess current carriers in the 
base (a), distribution of excess current carriers under the p+-n
junction along the base thickness (b) and on the base top 
surface (c) of the structure shown in Fig. 5. 

a)                                                                                       a) 

b)                                                                                         b) 

c)                                                                                         c) 
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of excess carriers in the base region and thus on the 
cross-talk of the signal. In this situation it is reasonable 
to apply the configuration of electrodes shown in Fig. 5 
which is much simpler from the technological point of 
view. 

5. Conclusions 

The presented theory enables to determine excess 
current carriers and electrical potential distributions 

for the arbitrary configuration of p+-n and n-n+ 
junctions as well as for the arbitrary level of injection 
and surface recombination velocity. 

Normalized dependences of the cross-talk enable 
to choose a proper construction of the developed 
structure. 
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Fig. 9. Contour distribution of the electrical potential in the
base (a), distribution of the electrical potential along the base
thickness (b) and on the top surface of the structure (c) shown
in Fig. 5. 

b) 

c) 

a) 

Fig. 10. Calculated integrals of excess current carrier 
distributions determined along the line perpendicular to the 
surface in the half of the distance between p+-n  junctions. 
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Appendix A1 – Deriving the formula (14) 

A recombination of holes and electrons in the 
vicinity of the surface are 

 

pqsnJ p Δ=
rr

,                    (A1.1) 

nJ
r

pqsn Δ−=
r

.                   (A1.2) 
 

Multiplying first equation by σσ qn /  and second 
one by σσ qp / , then subtracting them by sides we 
obtain 

pspgradnDnJ
q

J
q n

p
p

n Δ=Δ−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

rrrr

σ
σ

σ
σ

 

(A1.3) 
where according to Eq. (9) and analogical equation 
for nJ

r
, the component containing gradψ abolish. 

The second and third elements of Eq. (A.1.3) form 
Eq. (14). 

Appendix A2 – Deriving the formula (23) 

Due to the continuity of Fermi levels in the p-n 
junction there is fulfilled a mass-action law 

 

)]0()0([)]0()0([
)]0()0([)]0()0([

00

00

−Δ+−−Δ+−=
=+Δ+++Δ++

pnpp
pnpp

 

(A2.1) 
where: p0(+0), n0(+0), p0(−0), n0(−0) − equilibrium 
concentrations in p+- and n-regions. 

The mass effect law concerning equilibrium 
concentrations is described by 

 

)0()0()0()0( 0000 −−=++ npnp .   (A2.2) 
Subtracting above equations by sides and 

neglecting expressions of Δp2 order we obtain 
 

)0()]0()0([
)0()]0()0([

00

00

−Δ−+−=
=+Δ+++

pnp
pnp

        (A2.3) 

 

where from 

).0(
)0(
)0(

)0(
)0()0(
)0()0()0(

0

0

00

00

+Δ
−
+

≅

≅+Δ
−+−
+++

=−Δ

p
n
p

p
np
npp

  (A2.4) 

 

Since p0(+0) in the region p+ is much bigger than  
n0(−0) in the region n we can state that  

 

Δp(−0) >> Δp(+0)                  (A2.5) 
 

and we will use this inequality in the discussion of 
obtained results from continuity equations of currents 
at the p-n boundary. 

In the p-n junction theory [3] it is assumed that in 
the space charge region do not exist recombination 
states and in a consequence currents Jn and Jp are 
continuous. Thus in a stationary case total current 
density J is also continuous and it is sufficient to take 

into account in further considerations  one current 
only, e.g. Jp: 

)0()0( −=+ pp JJ .               (A2.6) 
 

To make use of the above equation let us express  
Jp  in the form 

dz
pdqDJJ p

p
Δ

−−=
σ
σ

           (A2.7) 
 

which is easy to derive joining formulae (8) and (9).  
Using above expression and taking into con- 

sideration a continuity of currents Jp and J 
 

),0()0( −=+ pp JJ )0()0( −=+ JJ     (A2.8) 
 

we obtain 
 

)0()0()0(

)0()0()0(

−
Δ

−−−−=

=+
Δ

+−+−

dz
pdqDJ

dz
pdqDJ

p

p

σ
σ
σ
σ

   (A2.9) 

 

where from 
 

.)0()0(

)0()0()0()0(

J

dz
pdqD

dz
pdqD

pp
⎥
⎦

⎤
⎢
⎣

⎡
−−+=

=−
Δ

−++
Δ

+−

σ
σ

σ
σ  

(A2.10) 
Since )0(+pσ  in the region p+  is almost equal to 

and σn(+0) and σp(−0)is much smaller than σ(−0), we 
can accept that the value of square parenthesis in the 
right side of Eq. (A2.10) is equal to 1, and finally we 
obtain 

J
qdz

pdD
dz

pdD 1)0()0()0( =
Δ

−++
Δ

+− . 

(A2.11) 
Considering an influence of the surface re- 

combination velocity at cd (Fig. 3), then introducing 
an effective diffusion length 

efp
L +  smaller than the 

real one and taking into account that a derivative of 
Δp(z) is negative when the p-n junction is polarised in 
the forward direction, we obtain 

 

efp
L
p

dz
pd

+

+Δ
−=+

Δ )0()0( .           (A2.12)  

 

A similar formula in the region n is 
 

nL
p

dz
pd )0()0( −Δ

+=−
Δ

.           (A2.13) 

 

Introducing above formula to (A2.11) we obtain 
 

J
qL

pD
L
pD

nefp

1)0()0()0()0( =
−Δ

−+
+Δ

+
+

 

(A2.14) 
From Eq. (A2.4) we have: 
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)0(
)0(
)0(

)0(
0

0 −Δ
+
−

=+Δ p
p
n

p         (A2.15) 

 

and substituting it to (A2.14) we obtain 
 

J
qL

pD
L
p

p
nD

nefp
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)0()0(

0
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−Δ
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−Δ

+
−

+
+
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(A2.16) 
And from the above equation we get finally 
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Dq

J

efpn
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(A2.17) 

Appendix A3 - Deriving the boundary 
condition for n-n+ junction 

There are two conditions concerning n-n+ junction: 
 

a) Continuity condition for the total current 
 

( ) ( )

⎥⎦
⎤

⎢⎣
⎡ −

Δ
−++

Δ
+=

=⎥
⎦

⎤
⎢
⎣

⎡
−−+

)0()0()0()0(
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L
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L
pDq

Jpp

σ
σ

σ
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(A3.1) 
b) Mass action law 

 

[ ][ ]
[ ][ ])0()0()0()0(

)0()0()0()0(
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−Δ+−−Δ+−=
=+Δ+++Δ++

pnpp
pnpp

 

(A3.2) 

where +0 and 0−  mean coordinates in the vicinity 
of n+-side and n-side of the junction, respectively. 

Taking into account inequality 
 

)0()0(( −<<
σ
σ

σ
σ pp                (A3.3) 

 

which takes place even if p(+0) <<p (−0) one can 
neglect )0()0( σσ +p  in the LHS of (A3.1). 

Transforming the mass action law (A3.2) and 
neglecting Δp2(+) and Δp2(−0) one obtains 

 

.
)0(
)0(

)0()0(
0

0

+
−

−Δ=+Δ
n
n

pp          (A3.4) 

 

The n-n+ junction is effective if the diffusion 
length L(+0) in n+-region is too small, so it is 
reasonable to accept a moderate condition 

 

).0(
)0(
)0(

)0(
0

0 −
+
−

>>+ L
n
n

L          (A3.5) 

Dividing (A3.4) by (A3.5) gives 
 

).0()0( −
Δ

<<+
Δ

L
p

L
p

              (A3.6) 
 

Due to inequalities (A3.3) and (A3.6) one can 
simplify Eq. (A3.1) and finally to get an effective 
boundary condition for the n-n+ junction in the form: 

 

J
D
L

q
p p )0()0(1)0( −−−=−Δ

σ
σ

.    (A3.7) 

 
 


