PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Probabilistic deformable models for weld defect contour estimation in radiography

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Computer Vision and Graphics ICCVG 2006 (25-27.09.2006 ; Warsaw, Poland)
Języki publikacji
EN
Abstrakty
EN
This paper describes a novel method for segmentation of weld defect in radiographic images. Contour estimation is formulated as a statistical estimation problem, where both the contour and the observation model parameters are unknown. Our approach can be described as a region-based maximum likelihood formulation of parametric deformable contours. This formulation provides robustness against the poor image quality, and allows simultaneous estimation of the contour parameters together with other parameters of the model. Implementation is performed by a deterministic iterative algorithm with minimal user intervention. Results testify very good performance of such contour estimation approach.
Rocznik
Strony
547--556
Opis fizyczny
Bibliogr. 12 poz., il., tab.
Twórcy
autor
autor
autor
  • Sign. and Imag. Proc. Laboratory, Research Center in Welding and NDT Route de Dely-Ibrahim, BP 64, Cheraga, 16600 Algiers, Algeria, nacereddine_naf@hotmail.com
Bibliografia
  • [1] Kass M., Witkin A., Terzopoulos D.: Snakes: Active contour models, Internat. Journ. Comput. And Vision, 1(4), 321-331, 1988.
  • [2] Lee E. T. Y.: Choosing nodes in parametric curve interpolation, Computer-Aided Design, 21, 363-370, 1989.
  • [3] Figueiredo M., Leitao J.: Bayesian Estimation of Ventricular Contours in Angiographie Images. IEEE Trans. Medical Imaging, 11(3), 416-429, 1992.
  • [4] Chesnaud C., Réfégier P., Boulet V.: Statistical region snake-based segmentation adapted to different physical noise models. IEEE Trans. PAMI, 21(11), 1145-1157, 1999.
  • [5] Figueiredo M., Leitao J., Jain A. K.: Unsupervised contour representation and estimation using B-Splines and a minimum description length criterion. IEEE Trans. Image Process., 9(6), 1075-1087, 2000.
  • [6] Kompatsiaris I., Tzovaras D., Koutkias V., Strintzis M. G.: Deformable boundary detection of stents in angiographie images. IEEE Trans. on Medical Imaging, 19(6), 652-662.
  • [7] Bentabet L., Jodouin S., Ziou D., Vaillancourt J.: Road vectors update using SAR imagery: A Snake-Based Method. IEEE Trans. on Geoscience and Remote Sensing, 41(8), 1787-1803, 2003.
  • [8] De Carvalho A. et al.: Evaluation of the relevant features of welding defects in radiographie inspection. Materials Research, 6(3),427-432.
  • [9] Schwartz Ch.: Automatic evaluation of welded joints using image processing on radiographs. Conference Proceedings of American Institute of Physics; 657, 689-694, 2003.
  • [10] Portilla J., Simoncelli P. E.: Image restoration using gaussian scale mixtures in the wavelet domain. 9th IEEE Conference on Image Processing, Barcelona, Spain, 2003.
  • [11] Jardim S. V. B., Figueiredo M.: Segmentation of fetal ultrasound images. Ultrasound in Medicine and Biology, 31(2), 243-250, 2005.
  • [12] Tridi M., Nacereddine N., Oucief N.: Contour estimation in synthetic and real weld defect images based on maximum likelihood. Transactions on Enformatika, Systems Sciences and Engineering; 9, 195-198, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0026-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.