PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Color and texture image segmentation using uniform local binary patterns

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Computer Vision and Graphics ICCVG 2006 (25-27.09.2006 ; Warsaw, Poland)
Języki publikacji
EN
Abstrakty
EN
The paper describes a new algorithm for image segmentation based on the color and texture features. The Uniform Local Binary Pattern (ULBP) method is used to extract texture features. Color features are defined based on the pixels' color bands. Image segmentation is carried out using the K-means algorithm on feature vectors, including color and texture features. The distance measure is defined as a function of the color and texture feature vector distances from the K-means defined centers. The weighting parameter is used to adjust the relative contribution of the color and texture features. The proposed algorithm is applied to color images in the RGB, HSV and IHLS color spaces. Experimental results show that the proposed algorithm yields good performance in combining color and texture features to distinguish different texture patterns. In particular, for textures with high color contrast, the results are prominent. The main advantage of the method is its speed and simplicity, which are inherited from the K-means algorithm.
Rocznik
Strony
265--274
Opis fizyczny
Bibliogr. 19 poz., tab., il.
Twórcy
autor
autor
  • School of Computing and Software Engineering, Southern Polytechnic State University, Marietta, GA, 30060-2896, sarasteh@spsu.edu
Bibliografia
  • [1] Smith A. R.: Color Gamut Transform Pairs: Proc. of ACM SIGGRAPH, 36-48, 1978.
  • [2] Rosenfeld A., Weszka J.: Picture Recognition in Digital Pattern Recognition. K. Fu (Ed.), Springer-Verlag,135-166, 1980.
  • [3] Daugman J.: Uncertainty Relation for Resolution in Space, Spatial Frequency and Orientation Optimised by Two-Dimensional Visual Cortical Filters, Journal of the Optical Society of America, 2,1160-1169, 1985.
  • [4] Levine M.: Vision in Man and Machine. McGraw-Hill, 1985.
  • [5] Bovik A., Clark M., Giesler W.: Multichannel texture analysis using localised spatial filters, IEEE Trans. Pattern Analysis and Machine Intelligence, 12, 55-73, 1990.
  • [6] Manjunath B., Chellappa R.: Unsupervised Texture Segmentation Using Markov Random Fields, IEEE Trans. Pattern Analysis and Machine Intelligence, 13(5), 478-482, 1991.
  • [7] Laine A., Fan J.: Texture Classification by Wavelet Packet Signatures, IEEE Trans. Pattern Analysis and Machine Intelligence, 15(ll), 1186-1191, 1993.
  • [8] Lerski R., Straughan K., Shad L., Boyce D., Bluml S., Zuna I.: MR Image TextureAnalysis – An Approach to Tissue Characterisation, Magnetic Resonance Imaging, 11, 873-887, 1993.
  • [9] Chen Y., Dougherty E.: Grey-Scale Morphological Granulometric Texture Classification, Optical Engineering, 33(8), 2713-2722, 1994.
  • [10] Panjwani D., Healey G.: Unsupervised segmentation of textured color images, IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(10), 939-954, 1995.
  • [11] Lu C., Chung P., Chen C.: Unsupervised Texture Segmentation via Wavelet Transform, Pattern Recognition, 30(5), 729-742, 1997.
  • [12] Strzelecki M., Materka A.: Markov Random Fields as Models of Textured Biomédical Images,Proc. 20th National Conf. Circuit Theory and Electronic Networks KTOiUE '97, Kołobrzeg, Poland, 493-498, 1997.
  • [13] Valkealathi K., Oja E.: Reduced Multidimensional Co-Occurrence Histograms in Texture Classification, IEEE Trans. Pattern Analysis and Machine Intelligence, 20(1), 90-94, 1998.
  • [14] Ojala T., Pietikinen M., Menp T.: Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns, IEEE Trans. Pattern Analysis and Machine Intelligence,24(7), 971-987, 2002.
  • [15] Chen J., Pappas T., Mojsilovic A., Rogowitz B.: Image segmentation by spatially adaptive color and texture features, Proc. Int. Conf. Image Processing, International Conference on Image Processing, Barcelona, Spain, 2003.
  • [16] Hunbury A.: A 3D-Polar Color representation Well Adapted to Image Analysis. Proc. 13th Scandinavian Conference,804-811, 2003.
  • [17] Chen J., Pappas T., Mojsilovic A., Rogowitz B.: Perceptually-tuned multiscale color-texture segmentation, Proc. Int. Conf. Image Processing, International Conference on Image Processing, Sinagapore, 2004.
  • [18] Yuchou C., Yue Z., Yonggang W.: Combined color and texture segmentation based on Fibonacci lattice sampling and mean shift, Image Analysis and Recognition, Second International Conference, ICIAR 2005, Lecture Notes in Computer Science, 3656, 24-31, 2005.
  • [19] Ooi W. S., Lim C. P.: Fuzzy clustering of color and texture features for image segmentation: a study on satellite image retrieval, Journal of Intelligent & Fuzzy Systems, 17(3), 297-311, 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0025-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.