PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Energy transport in plasmon waveguides on chains of metal nanoplates

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An interest in energy transport in 3D chains of metal nanoparticles is oriented towards future applications in nanoscale optical devices. We consider plasmonic waveguides composed of silver nanoplates arranged in several geometries to find the one with the lowest attenuation. We investigate light propagation of 500-nm wavelength along different chains of silver nanoplates of subwavelength length and width and wavelength-size height. Energy transmission of the waveguides is analysed in the range of 400-2000 nm. We find that chain of short parallel nanoplates guides energy better than two electromagnetically coupled continuous stripes and all other considered nonparallel structures. In a wavelength range of 500-600 nm, this 2-µm long 3D waveguide transmits 39% of incident energy in a channel of λ x λ/2 cross section area.
Twórcy
autor
autor
autor
Bibliografia
  • 1. H. Raether, Surface Plasmons, Springer, Berlin, 1988.
  • 2. C. Sönnichsen, "Plasmons in metal nanostructures", PhD Thesis, Ludwig-Maximilians-Universtät München, München, 2001.
  • 3. A.V. Zayats and I.I. Smolyaninov, "Near-field photonics: surface plasmon polaritons and localized surface plasmons", J. Opt. A: Pure Appl. Opt. 5, S16-S50 (2003).
  • 4. W.L. Barnes, A. Dereux, and T.W. Ebbesen, "Surface plasmon subwavelength optics", Nature 424, 824-830 (2003).
  • 5. D. Sarid, "Long-range surface-plasma waves on very thin metal films", Phys. Rev. Lett. 47, 1927-1930 (1981).
  • 6. J.J. Burke, G.I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films", Phys. Rev. B33, 5286-5301 (1986).
  • 7. W.L. Barnes, S.C. Kitson, T.W. Preist, and J.R. Sambles, "Photonic surfaces for surface-plasmon polaritons", J. Opt. Soc. Am. A14, 1654-1661 (1997).
  • 8. M. Quinten, A. Leitner, J.R. Krenn, and F.R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles", Opt. Lett. 23, 1331-1333 (1998).
  • 9. J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles", Phys. Rev Lett. 82, 2590-2593 (1999).
  • 10. J.C. Weeber, A. Dereux, C. Girard, J.R. Krenn, and J.P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light", Phys. Rev. B60, 9061-9068 (99990.
  • 11. B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F.R. Aussenegg, and J.C. Weeber, "Surface plasmon propagation in microscale metal stripes", Appl. Phys. Lett. 79, 51-53 (2001).
  • 12. J.C. Weeber, J.R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J.P. Goudonnet, "Near-field observation of surface plasmon polariton propagation on thin metal stripes", Phys. Rev. B, 64045411 (2001).
  • 13. J.C. Weeber, M.U. González, A.L. Baudrion, and A. Dereux, "Surface plasmon routing along right angle bent metal strips", Appl. Phys. Lett. 87, 221101 (2005).
  • 14. T. Yatsui, M. Kourogi, and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion", Appl. Phys. Lett. 79, 4583-4585 (2001).
  • 15. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures", Phys. Rev. B61, 10484-10503 (2000).
  • 16. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Skrzek, "Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width", Opt. Lett. 52, 844-846 (2000).
  • 17. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures", Phys. Rev. B63, 125417 (2001).
  • 18. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, "Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons", Opt. Express 13, 977-984 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-3-977.
  • 19. P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, "Characterization of long-range surface-plasmon polariton waveguides", J. Appl. Phys. 98, 043109 (2005).
  • 20. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M.S. Larsen, and S.I. Bozhevolnyi, "Integrated optical components utilizing long-range surface plasmon polaritons", J. Lightwave Technol. 23, 413-422 (2005).
  • 21. K. Leosson, T. Nikolajsen, A. Boltasseva, and S.I. Bozhevolnyi, "Long-range surface plasmon polariton nanowire waveguides for device applications", Opt. Express 14, 314-319 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-1-314.
  • 22. M.L. Brongersma, J.W. Hartman, and H.A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit", Phys. Rev. B62, R16356-R16359 (2000).
  • 23. S.A. Maier, "Guiding of electromagnetic energy in subwavelength periodic metal structures", PhD Thesis, California Institute of Technology, Pasadena, 2003.
  • 24. S.A. Maier, P.G. Kik, and H.A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides", Phys. Rev. B67, 205402 (2003).
  • 25. S.A. Maier, M.D. Friedman, P.E. Barclay, and O. Painter, "Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing", Appl. Phys. Lett. 86, 071103 (2005).
  • 26. A. Degiron and D.R. Smith, "Numerical simulations of long-range plasmons", Opt. Express 14, 1611-1625 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-4-1611.
  • 27. W. Saj, "FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice", Opt. Express 13, 4818-4827 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-13-4818.
  • 28. W.M. Saj, T.J. Antosiewicz, J. Pniewski, and T. Szoplik, "Plasmon waveguides on silver nanoelements", Proc. SPIE 6195, 227-237 (2006).
  • 29. L. Liu, Z. Han, and S. He, "Novel surface plasmon waveguide for high integration", Opt. Express 13, 6645-6650 (2005). http://www.opticsinfobase.org/abstract.scfm?URI=oe-13-17-6645.
  • 30. R. Zia, M.D. Selker, P.B. Catrysse, and M.L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes", J. Opt. Soc. Amer. A21, 2442-2446 (2004).
  • 31. J.A. Dionne, L.A. Sweatlock, H.A. Atwater, and A. Polman, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization", Phys. Rev. B73, 035407 (2006).
  • 32. A. Taflove and S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Norwood, 2000.
  • 33. P. Johnson and R. Christy, "Optical constants of the noble metals", Phys. Rev. B6, 4370-4379 (1972).
  • 34. D. Gerace and L. Andreani, "Low-loss guided modes in photonic crystal waveguides", Opt. Express 13, 4939-4951 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-13-4939.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0013-0046
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.