PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Competitive technologies of third generation infrared photon detectors

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Infrared Photodetectors (IPH) ; (30-31.08.2005, Warsaw, Poland)
Języki publikacji
EN
Abstrakty
EN
Hitherto, two families of multielement infrared (IR) detectors are used for principal military and civilian infrared applications; one is used for scanning systems (first generation) and the other is used for staring systems (second generation). Third generation systems are being developed nowadays. In the common understanding, third generation IR systems provide enhanced capabilities like larger number of pixels, higher frame rates, better thermal resolution as well as multicolour functionality and other on-chip functions. In the paper, issues associated with the development and exploitation of materials used in fabrication of third generation infrared photon detectors are discussed. In this class of detectors two main competitors, HgCdTe photodiodes and quantum well IR photoconductors (QWIPs) are considered. The performance figures of merit of state-of-the-art HgCdTe and QWIP focal plane arrays (FPAs) are similar because the main limitations come from the readout circuits. However, the metallurgical issues of the epitaxial layers such as uniformity and number of defected elements are the serious problems in the case of long wavelength infrared (LWIR) and very LWIR (VLWIR) HgCdTe FPAs. It is predicted that superlattice based InAs/GaInSb system grown on GaSb substrate seems to be an attractive to HgCdTe with good spatial uniformity and an ability to span cutoff wavelength from 3 to 25 μm.
Twórcy
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland, rogan@wat.edu.pl
Bibliografia
  • 1. P.R. Norton, "Infrared detectors in the next millennium", Proc. SPIE 3698, 652-665 (1999).
  • 2. P. Norton, J. Campbell, S. Horn, and D. Reago, "Thirdgeneration infrared imagers", Proc. SPIE 4130, 226-236 (2000).
  • 3. P.R. Norton, "Third-generation sensors for night vision", Opto-Electron. Rev. 14, 1-10 (2006).
  • 4. A. Rogalski, "Optical detectors for focal plane arrays", Opto-Electron. Rev. 12, 221-245 (2004).
  • 5. P. Norton, "HgCdTe infrared detectors", Opto-Electron. Rev. 10, 159-174 (2002).
  • 6. A. Rogalski, "HgCdTe infrared detector material: History, status, and outlook", Rep. Prog. Phys. 68, 2267-2336 (2005).
  • 7. M.Z. Tidrow, W.A. Beck, W.W. Clark, H.K. Pollehn, J.W. Little, N.K. Dhar, P.R. Leavitt, S.W. Kennerly, D.W. Beekman, A.C. Goldberg, and W.R. Dyer, "Device physics and focal plane applications of QWIP and MCT", Opto-Electron. Rev. 7, 283-296 (1999).
  • 8. S.D. Gunapala and S.V. Bandara, "GaAs/AlGaAs based quantum well infrared photodetector focal plane arrays", in Handbook of Infrared Detection Technologies, pp. 83-119, edited by M. Henini and M. Razeghi, Elsevier, Oxford, 2002.
  • 9. A. Rogalski, "Quantum well photoconductors in infrared detectors technology", J. Appl. Phys. 93, 4355-4391 (2003).
  • 10. A. Rogalski, "Assessment of HgCdTe photodiodes and quantum well infrared photoconductors for long wavelength focal plane arrays", Infrared Phys. Technol. 40, 279-294 (1999).
  • 11. L. Bürkle and F. Fuchs, "InAs/(GaIn)Sb superlattices: a promising material system for infrared detection", in Handbook of Infrared Detection and Technologies, pp. 159-189, edited by M. Henini and M. Razeghi, Elsevier, Oxford, 2002.
  • 12. W. Cabanski, K. Eberhardt, W. Rode, J. Wendler, J. Ziegler, J. Fleißner, F. Fuchs, R. Rehm, J. Schmitz, H. Schneider, and M. Walther, "3rd gen focal plane array IR detection modules and applications", Proc. SPIE 5406, 184-192 (2005).
  • 13. R. Rehm, M. Walther, J. Schmitz, J. Fleißner, F. Fuchs, J. Ziegler, and W. Cabanski, "InAs/GaSb superlattice focal plane arrays for high-resolution thermal imaging", Opto-Electron. Rev. 14, 19–24 (2006).
  • 14. A. Rogalski and P. Martyniuk, "InAs/GaInSb superlattices as a promising material system for third generation infrared detectors", Infrared Phys. Technol. 48, 39-52 (2006).
  • 15. A.W. Hoffman, P.L. Love, and J.P. Rosbeck, "Mega-pixel detector arrays: Visible to 28 µm", Proc. SPIE 5167, 194-203 (2004).
  • 16. A. Hoffman, "Semiconductor processing technology improves resolution of infrared arrays", Laser Focus World 42, 81-84 (2006).
  • 17. D. Reago, S. Horn, J. Campbell, and R. Vollmerhausen, "Third generation imaging sensor system concepts", Proc. SPIE, 3701, 108-117 (1999).
  • 18. L.J. Kozlowski and W.F. Kosonocky, "Infrared detector arrays", in Handbook of Optics, Chap. 23, edited by M. Bass, E.W. Van Stryland, D.R. Williams, and W.L. Wolfe, McGraw-Hill, Inc. New York, 1995.
  • 19. S. Horn, P. Norton, K. Carson, R. Eden, and R. Clement, "Vertically-integrated sensor arrays - VISA", Proc. SPIE 5406, 332-340 (2004).
  • 20. R. Balcerak and S. Horn, "Progress in the development of vertically-integrated sensor arrays", Proc. SPIE 5783, 384-391 (2005).
  • 21. E.P.G. Smith, L.T. Pham, G.M. Venzor, E.M. Norton, M.D. Newton, P.M. Goetz, V.K. Randall, A.M. Gallagher, G.K. Pierce, E.A. Patten, R.A. Coussa, K. Kosai, W.A. Radford, L.M. Giegerich, J.M. Edwards, S.M. Johnson, S.T. Baur, J.A. Roth, B. Nosho, T.J. De Lyon, J.E. Jensen, and R.E. Longshore, "HgCdTe focal plane arrays for dual-colour mid- and long-wavelength infrared detection", J. Electron. Mater. 33, 509-516 (2004).
  • 22. W.A. Radford, E.A. Patten, D.F. King, G.K. Pierce, J. Vodicka, P. Goetz, G. Venzor, E.P. Smith, R. Graham, S.M. Johnson, J. Roth, B. Nosho, and J. Jensen, "Third generation FPA development status at Raytheon Vision Systems", Proc. SPIE 5783, 331-339 (2005).
  • 23. A.C. Goldberger, S.W. Kennerly, J.W. Little, H.K. Pollehn, T.A. Shafer, C.L. Mears, H.F. Schaake, M. Winn, M. Taylor, and P.N. Uppal, "Comparison of HgCdTe and QWIP dual-band focal plane arrays", Proc. SPIE 4369, 532-546 (2001).
  • 24. H. Schneider, M. Walther, J. Fleissner, R. Rehm, E. Diwo, K. Schwarz, P. Koidl, G. Weimann, J. Ziegler, R. Breiter, and W. Cabanski, "Low-noise QWIPs for FPA sensors with high thermal resolution", Proc. SPIE 4130, 353-362 (2000).
  • 25. H. Schneider, P. Koidl, M. Walther, J. Fleissner, R. Rehm, E. Diwo, K. Schwarz, and G. Weimann, "Ten years of QWIP development at Fraunhofer", Infrared Phys. Technol. 42, 283-289 (2001).
  • 26. M. Jhabvala, K. Choi, A. Goldberg, A. La, and S. Gunapala, "Development of a 1kx1k GaAs QWIP far IR imaging array", Proc. SPIE 5167, 175-185 (2004).
  • 27. S.D. Gunapala, S.V. Bandara, J.K. Liu, C.J. Hill, B. Rafol, J.M. Mumolo, J.T. Trinh, M.Z. Tidrow, and P.D. LeVan, "1024x1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications", Semicond. Sci. Technol. 20, 473-480 (2005).
  • 28. S.D. Gunapala, S.V. Bandara, J.K. Liu, C.J. Hill, B. Rafol, and J.M. Mumolo, "640x512 pixel long-wavelength infrared narrowband, multiband, and broadband QWIP focal plane arrays", IEEE Trans. Electron Devices 50, 2353-2360 (2004).
  • 29. G.J. Brown, F. Szmulowicz, K. Mahalingam, S. Houston, Y. Wei, A. Gon, and M. Razeghi, "Recent advances in InAs/GaSb superlattices for very long wavelength infrared detection", Proc. SPIE 4999, 457-466 (2003).
  • 30. D.L. Smith and C. Mailhiot, "Proposal for strained type II superlattice infrared detectors”, J. Appl. Phys. 62, 2545-2548 (1987).
  • 31. C. Mailhiot and D.L. Smith, "Long-wavelength infrared detectors based on strained InAs-GaInSb type-II superlattices", J. Vac. Sci. Technol. A7, 445-449 (1989).
  • 32. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures, Monographies de Physiques Series, Halsted Press, New York, 1988.
  • 33. J.P. Omaggio, J.R. Meyer, R.J. Wagner, C.A. Hoffman, M.J. Yang, D.H. Chow, and R.H. Miles, "Determination of band gap and effective masses in InAs/Ga1-xInxSb superlattices", Appl. Phys. Lett. 61, 207-209 (1992).
  • 34. C.A. Hoffman, J.R. Meyer, E.R. Youngdale, F.J. Bartoli, R.H. Miles, and L.R. Ram-Mohan, "Electron transport in InAs/Ga1-xInxSb superlattices", Solid State Electron. 37, 1203-1206 (1994).
  • 35. C.H. Grein, P.M. Young, and H. Ehrenreich, "Minority carrier lifetimes in ideal InGaSb/InAs superlattice", Appl. Phys. Lett. 61, 2905-2907 (1992).
  • 36. C.H. Grein, P.M. Young, M.E. Flatté, and H. Ehrenreich, "Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes", J. Appl. Phys. 78, 7143-7152 (1995).
  • 37. E.R. Youngdale, J.R. Meyer, C.A. Hoffman, F.J. Bartoli, C.H. Grein, P.M. Young, H. Ehrenreich, R.H. Miles, and D.H. Chow, "Auger lifetime enhancement in InAs-Ga1-xInxSb superlattices", Appl. Phys. Lett. 64, 3160-3162 (1994).
  • 38. O.K. Yang, C. Pfahler, J. Schmitz, W. Pletschen, and F. Fuchs, "Trap centers and minority carrier lifetimes in InAs/GaInSb superlattice long wavelength photodetectors", Proc. SPIE 4999, 448-456 (2003).
  • 39. H. Ehrenreich, C.H. Grein, R.H. Miles and M.E. Flatte, "Reply to Comment on Temperature limits on infrared detectivities of InAs/InxGa1-xSb superlattices and bulk HgxCd1-xTe", [J. Appl. Phys. 80, 2542 (1996)], J. Appl. Phys. 80, 2545-2546 (1996).
  • 40. J. Piotrowski and A. Rogalski, "“Comment on“ Temperature limits on infrared detectivities of InAs/InxGa1-xSb superlattices and bulk HgxCd1-xTe", [J. Appl. Phys. 74, 4774 (1993)], J. Appl. Phys. 80, 2542-2544 (1996).
  • 41. J. Piotrowski and A. Rogalski, "Uncooled long wavelength infrared photon detectors", Infrared Physics & Technol. 46, 115-131 (2004).
  • 42. J.L. Johnson, "The InAs/GaInSb strained layer superlattice as an infrared detector material: An Overview", Proc. SPIE 3948, 118-132 (2000).
  • 43. G.J. Brown, "Type-II InAs/GaInSb superlattices for infrared detectors: an overview", Proc. SPIE 5783, 65-77 (2005).
  • 44. R. Rehm, M. Walther, J. Schmitz, J. Fleißner, F. Fuchs, W. Cabanski, and J. Ziegler, "InAs/(GaIn)Sb short-period superlattices for focal plane arrays", Proc. SPIE 5783, 123-130 (2005).
  • 45. E.H. Aifer, I. Vurgaftman, C.L. Canedy, J.G. Tischler, J.H. Warner, E.M. Jackson, and J.R. Meyer, "W-Structured type-II superlattices based long-wave infrared photodiodes with high dynamic impedance", to be published.
  • 46. E.H. Aifer, J.G. Tischler, J.H. Warner, I. Vurgaftman, and J.R. Meyer, "Dual band LWIR/VLWIR type-II superlattice photodiodes", Proc. SPIE 5783, 112-122 (2005).
  • 47. R. Rehm, M. Walther, H. Schneider, J. Fleißner, J. Schmitz, J. Ziegler, W. Cabanski, and R. Breiter, "Bispectral thermal imaging with quantum-well infrared photodetectors and InAs/GaSb type II superlattices", Proc. SPIE 6206, paper 34.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0012-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.