PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Interfaces as design tools for short-period InAs/GaSb type-II superlattices for mid-infrared detectors

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Infrared Photodetectors (IPH) ; (30-31.08.2005, Warsaw, Poland)
Języki publikacji
EN
Abstrakty
EN
The effect of interface anisotropy on the electronic structure of InAs/GaSb type-II superlattices is exploited in the design of thin-layer superlattices for mid-IR detection threshold. The design is based on a theoretical envelope function model that incorporates the change of anion and cation species across InAs/GaSb interfaces, in particular, across the preferred InSb interface. The model predicts that a given threshold can be reached for a range of superlattice periods with InAs and GaSb layers as thin as a few monolayers. Although the oscillator strengths are predicted to be larger for thinner period superlattices, the absorption coefficients are comparable because of the compensating effect of larger band widths. However, larger intervalence band separations for thinner-period samples should lead to longer minority electron Auger lifetimes and higher operating temperatures in p-type SLs. In addition, the hole masses for thinner-period samples are on the order the free-electron mass rather than being effectively infinite for the wider period samples. Therefore, holes should also contribute to photoresponse. A number of superlattices with periods ranging from 50.6 to 21.2 Å for the 4 µm detection threshold were grown by molecular beam epitaxy based on the model design. Low temperature photoluminescence and photoresponse spectra confirmed that the superlattice band gaps remained constant at 330 meV although the period changed by the factor of 2.5. Overall, the present study points to the importance of interfaces as a tool in the design and growth of thin superlattices for mid-IR detectors for room temperature operation.
Twórcy
autor
autor
autor
autor
autor
Bibliografia
  • 1. D.L. Smith and C. Mailhiot, J. Appl. Phys. 62, 2545 (1987); Surface Science 196, 683 (1988); Rev. Mod. Phys. 62, 173 (1990).
  • 2. C. Mailhiot and D.L. Smith, J. Vac. Sci. Technol. A7, 445 (1989).
  • 3. G.J. Brown, F. Szmulowicz, K. Mahalingam, and S. Houston, "Quantum sensing: evolution and revolution from past to future", Proc. SPIE 4999, 457 (2003).
  • 4. J.R. Meyer, C.A. Hoffman, F.J. Bartoli, and L.R. Ram-Mohan, Appl. Phys. Lett. 67, 757 (1995).
  • 5. Q.K. Yang, F. Fuchs, J. Schmitz, and W. Pletschen, Appl. Phys. Lett. 81, 4757 (2002).
  • 6. A. Rogalski, Prog. Quant. Electr. 27, 59 (2003).
  • 7. J. Piotrowski and A. Rogalski, SPIE 5359, 10 (2004).
  • 8. C.H. Grein, W.H. Lau, T.L. Harbert, and M.E. Flatté, Proc. SPIE. 4795, 39 (2002).
  • 9. W.H. Lau and M.E. Flatté, Appl. Phys. Lett. 80, 1683 (2002).
  • 10. F. Szmulowicz, H. Haugan, and G.J. Brown, Phys. Rev. B69, 155321 (2004).
  • 11. J.N. Schulman and Y.C. Chang, J. Vac. Sci. Technol. B1, 644 (1983); J.N. Schulman and Y.C. Chang, Phys. Rev. B31, 2056 (1980); O. Krebs and P. Voisin, Phys. Rev. Lett. 77, 1829 (1996).
  • 12. E.L. Ivchenko, A.Yu. Kaminski, and U. Rössler, Phys. Rev. B54, 5852 (1996).
  • 13. U. Rössler, and J. Kainz, Solid State Commun. 121, 313 (2002).
  • 14. E.L. Ivchenko, A.A. Toporov, and P. Voisin, Phys. Sol. State 40, 1748 (1998).
  • 15. E.L. Ivchenko and M.O. Nestoklon, J. Exp. Theor. Phys. 94, 644 (2002); Zh. Exkp. Teor. Fiz. 121, 747 (2002).
  • 16. E.L. Ivchenko, A.Yu. Kaminskii, and I.L. Aleiner, J. Exp. Theor. Phys. 77, 609 (1993); E.L. Ivchenko and I.L. Aleiner, JETP Lett. 55, 692 (1992).
  • 17. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures, Wiley, New York, 1988.
  • 18. G. Bastard, J.A. Brum, and R. Ferreira, "Semiconductor heterostructures, and nanostructures", Solid State Physics 44, 1991.
  • 19. C. Cortez, O. Krebs, and P. Voisin, Eur. Phy. B21, 241 (2001).
  • 20. L. Vervoort, R. Fereira, and P. Voisin, Semicond. Sci. and Technol. 14, 227 (1999).
  • 21. L. Vervoort, R. Ferreira, and P. Voisin, Phys. Rev. B56, 12744 (1997).
  • 22. O. Krebs, W. Seidel, J.P. Andre, D. Bertho, C. Jouanin, and P. Voisin, Semicond. Sci. Technol. 12, 938 (1997).
  • 23. P. Ongstad, R. Kaspi, C.E. Moeller, M.L. Tilton, T.M. Gianardi, J.R. Chavez, and G.C. Dente, J. Appl. Phys. 89, 2185 (2001).
  • 24. R. Kaspi, C. Moeller, A. Ongstad, M.L. Tilton, D. Gianardi, G. Dente, and P. Gopaladasu, Appl. Phys. Lett. 76, 409 (2000).
  • 25. E.E. Takhtamirov and V.A. Volkov, J. Exp. Theor. Phys. Lett. 71, 422 (2000); Pisma Zh. Eksp. Teor. Fiz. 77, 612 (2000); E.E. Takhtamirov and V.A. Volkov, J. Exp. Theor. Phys. 90, 1063 (2000), Zh. Eksp. Teor. Fiz. 117, 1221 (2000); E. E. Takhtamirov and V.A. Volkov; J. Exp. Theor. Phys. 89, 1000 (1999), Zh. Eksp. Teor. Fiz. 116, 1843 (1999).
  • 26. B.A. Foreman, Phys. Rev. Lett. 81, 425 (1998); see also Phys. Rev. B54, 1909 (1996).
  • 27. J.T. Olesberg, W.H. Lau, M.R Flatte, C.Yu, E. Altunkaya, E.M. Shaw, T.C. Hasenberg, and T.F. Boggess, Phys. Rev. B64, 201301 (2001).
  • 28. K.C. Hall, K. Gundogdu, E. Altunkaya, W.H. Lau, M.E. Flatte, T. Boggess, J.J. Zinck, W.B. Barvos-Carter, and L. Skeith, Phys. Rev. B68, 115311 (2003).
  • 29. W.H. Lau and M.E. Flatte, Appl. Phys. Lett. 80, 1683 (2002).
  • 30. C.H. Grein, M.E. Flatte, J.T. Olesberg, S.A. Anson, L. Zhang, and T.F. Boggess, J. Appl. Phys. 92, 7311 (2002).
  • 31. H.J. Haugan, F. Szmulowicz, G.J. Brown, K. Mahalingam, Appl. Phys. Lett. 84, 5410 (2004).
  • 32. H.J. Haugan, F. Szmulowicz, G.J. Brown, K. Mahalingam, J. Appl. Phys. 96, 2580 (2004).
  • 33. Y. Wei, A. Gin, M. Razeghi, and G.J. Brown, Appl. Phys. Lett. 80, 3262 (2000).
  • 34. Y. Wei, A. Gin, M. Razeghi, and G.J. Brown, Appl. Phys. Lett. 81, 3675 (2002).
  • 35. F. Fuchs, E. Ahlswede, U. Weimar, W. Pletschen, J. Schmitz, M. Hartung, B. Jager, J.P. Kotthaus, and F. Szmulowicz, Appl. Phys. Lett. 73, 3760 (1998).
  • 36. H.J. Haugan, L. Grazulis, G.J. Brown, K. Mahalingam, and D.H. Tomich, J. Cryst. Growth 261, 471 (2004).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0012-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.