PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physical analysis of an operation of GalnAs/GaAs quantum-well vertical-cavity surface-emitting diode lasers emitting in the 1.3-žm wavelength range

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Comprehensive three-dimensional self-consistent optical-electrical-thermal-gain physical modelling is used to simulate room-temperature continuous-wave performance characteristics of GalnAs/GaAs lasers emitting in the 1.3žm wavelength range. The simulation takes into consideration all physical phenomena crucial for a laser operation including all important interactions between them. A real possibility to design high-performance 1.26-žm GalnAs/GaAs quantum-well vertical-cavity surface-emitting diode lasers (VCSELs) with the aid of a currently available technology is shown. Their outputs are much higher than in the case of their quantum-dot version. Methods to shift the emitting wavelength range of 1.3 žm are discussed and anticipated performance characteristics of such a 1.3žm VCSELs are determined.
Słowa kluczowe
Czasopismo
Rocznik
Strony
225--240
Opis fizyczny
Bibliogr. 30 poz., wykr.
Twórcy
  • Laboratory of Computer Physics, Institute of Physics, Technical University of Łódź, ul. Wólczańska 219, 93-005 Łódź, Poland, rpsarzal@p.lodz.pl
Bibliografia
  • [1] Sarzala R.P., Computer simulation of performance characteristics of (Gain) (NAs) diode lasers, Optica Applicata 32(3), 2002, pp. 449-60.
  • [2] Koyama F., Schlenker D., Miyamoto T., Chen Z., Matsutani A., Sakaguchi T., Iga K., Da^a transmission over single-mode fiber by using 1.2-m uncooled GalnAs-GaAs laser for Gb/s local area network, IEEE Photonics Technology Letters 12(2), 2000, pp. 125-7.
  • [3] Harmand J.C., Li L.H., Patriarche G., Travers L., GalnAs/GaAs quantum-well growth assisted by Sb surfactant: Tow/ard 1.3nm emission, Applied Physics Letters 84(20), 2004, pp. 3981-3.
  • [4] Ni H.Q., Niu Z.C., Xu X.H., Xu Y.Q., Zang W., Wei X., Bian L.F., He Z.H., Han Q., Wu R.H., High-indium-content InxGa1_xAs/GaAs quantum wells with emission wavelengths above 1.25um at room temperature, Applied Physics Letters 84(25), 2004, pp. 5100-2.
  • [5] Mogg S., Plaine G., Asplund C., Sundgren P., Baskar K., Mulot M., Shatz R., Hammar M., High-performance 1.2-m Highly strained InGaAs/GaAs quantum well lasers, Conference Proceedings - International Conference on Indium Phosphide and Related Materials, 2002, pp. 107-10.
  • [6] Sung L.W., Lin H.H., Highly strained 1.24-m InGaAs/GaAs quantum-well lasers, Applied Physics Letters 83(6), 2003, pp. 1107-9.
  • [7] Asplund C., Sundgren P., Mogg S., Hammar M., Christiansson U., Oscarsson V., Runnstrom C., Odling E., Malmquist J., 1260 nm InGaAs vertical-cavity lasers, Electronics Letters 38(13), 2002, pp. 635-6.
  • [8] Schlenker D., Miyamoto T., Chen Z.B., Kawaguchi M., Kondo T., Gouardes E., Koyama F., Iga K., Critical layer thickness of 1.2-m highly strained GalnAs/GaAs quantum wells, Journal of Crystal Growth 221, 2000, pp. 503-8.
  • [9] Kudo M., Mishima T., Improved photoluminescence properties of highly strained InGaAs/GaAs quantum wells grown by molecular-beam epitaxy, Journal of Applied Physics 78(3), 1995, pp. 1685-8.
  • [10] Roan E.J., Cheng K.Y., Long-wavelength (1.3¡im) luminescence in InGaAs strained quantum-well structures grown on GaAs, Applied Physics Letters 59(21), 1991, pp. 2688-90.
  • [11] Aboelfotoh M.O., Borak M.A., Narayan J., Ohmic contact top-type GaAs using Cu3Ge, Applied Physics Letters 75(25), 1999, pp. 3953-5.
  • [12] Ueng U.J., Chen N.-P., Janes D.B., Webb K.J., McInturff D.T., Melloch M.R., Temperature -dependent behavior of low-temperature-grown GaAs nonalloyed ohmic contacts, Journal of Applied Physics 90(11), 2001, pp. 5637-41.
  • [13] Osiński M., Nakwaski W., [In] Vertical-Cavity Surface-Emitting Laser Devices, [Eds.] E.H. Li, K. Iga, Series on Photonics, Vol. 6, Springer , Berlin, Heidelberg 2003, p. 135.
  • [14] Skierbiszewski C., Experimental studies of the conduction-band structure of GaInNAs alloys, Semiconductor Science and Technology 17(8), 2002, pp. 803-14.
  • [15] Blakemore J.S., Semiconducting and other major properties ofgallium arsenide, Journal of Applied Physics 53(10), 1982, pp. R123-81.
  • [16] Chow W.W., Jones E.D., Modine N.A., Allerman A.A., Kurtz S.R., Laser gain and threshold properties in compressive-strained and lattice-matched GaInNAs/GaAs quantum wells, Applied Physics Letters 75(19), 1999, pp. 2891-3.
  • [17] Vurgaftman I., Meyer J.R., Ram-Mohan L.R., Band parameters for III-V compound semiconductors and their alloys, Journal of Applied Physics 89(11), 2001, pp. 5815-75.
  • [18] Moumanis K., Seisyan R.P., Kokhanovskii S.I., Sasin M.E., Light and heavy hole excitons in absorption and magnetoabsorption spectra of InGaAs/GaAs MQWs, Thin Solids Films 364(1-2), 2000, pp. 249-53.
  • [19] Lancefield D., Adams A.R., Meney A.T., Knap W., Litwin-Staszewska E., Skierbiszewski C., Robert J.L., Light-hole mass in a strained InGaAs/GaAs single quantum well and its pressure dependence, Journal of Physics and Chemistry of Solids 56(3-4), 1995, pp. 469-73.
  • [20] Nakwaski W., Osiński M., Thermal analysis of GaAs/AGa/As etched well surface-emitting double-heterostructures lasers with dielectric mirrors, IEEE Journal of Quantum Electronics 29(6), 1993, pp. 1981-95.
  • [21] Sarzała R.P., Nakwaski W., Carrier diffusion inside active regions of gain-guided vertical-cavity surface-emitting lasers, lEE Proceedings: Optoelectronics 144(6), 1997, pp. 421-5.
  • [22] Fehse R., Tomić S., Adams A.R., Sweeney S.J., O'Reilly E.P., Andreev A., Riechert H., A quantitative study of radiative, auger, and defect related recombination processes in 1.3-im GaInNAs-based quantum-well lasers, IEEE Journal of Selected Topics in Quantum Electronics 8(4), 2002, pp. 801-10.
  • [23] Henzel H., Wünsche H.-J., The effective frequency method in the analysis of vertical-cavity surface-emitting lasers, IEEE Journal of Quantum Electronics 33(7), 1997, pp. 1156-62.
  • [24] Alexander W., Shackelford J., Materials Science and Engineering Handbook, CRC Press 2000.
  • [25] Nakwaski W., Thermal conductivity of binary, ternary, and quaternary III-V compounds, Journal of Applied Physics 64(1), 1988, pp. 159-66.
  • [26] Chuang S.L., Physics of Optoelectronics Devices, Wiley, New York 1995.
  • [27] Eliseev P.G., Line shape function for semiconductor laser modelling, Electronics Letters 33(24), 1997, pp. 2046-8.
  • [28] Sarzala R.P., Modeling of the threshold operation of 1.3-m GaAs-based oxide-confined (InGa)As-GaAs quantum-dot vertical-cavity surface-emitting lasers, IEEE Journal of Quantum Electronics 40(6), 2004, pp. 629-34.
  • [29] Sarzala R.P., Nakwaski W., Optimization of 1.3ßm GaAs-based oxide-confined (GaIn)(NAs) vertical-cavity surface-emitting lasers for low-threshold room-temperature operation, Journal of Physics: Condensed Matter 16(31), 2004, S3121-40.
  • [30] Thurmond C.D., Standard thermodynamic functions for the formation ofelectrons and holes in Ge, Si, GaAs, and GaP, Journal of the Electrochemical Society 122(8), 1975, pp. 1133-41.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0012-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.