PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

LOD modelling of polygonal models

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An automatic edge-collapse based simplification method has been proposed for decimation of polygonal models and generating their LODs (Levels of detail). The measure of geometric fidelity employed is motivated by the normal space deviation of a polygonal model arising during its decimation process and forces the algorithm to minimize the normal space deviation. In spite of the global nature of the evaluation of geometric deviation, the algorithm is memory efficient and involves less execution time then the state-of-the art simplification algorithms. This automatically prevents the creation of folds and automatically preserves visually important features of the model even at low levels of detail. LODs generated by our method compare favorably with those produced by the standard QEM-based algorithm QSlim in terms of the mean and maximum geometric errors, whereas its performance in preserving normal space of the original model is better than that of QSlim.
Rocznik
Strony
325--343
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
autor
  • Graduate School of Information Science and Electrical Engineering, Kyushu University, 6-1, Kasuga Koen, Kasuga, Fukuoka, Japan
  • Intelligent Cooperation and Control, PRESTO, JST
autor
  • Graduate School of Information Science and Electrical Engineering, Kyushu University, 6-1, Kasuga Koen, Kasuga, Fukuoka, Japan
  • Intelligent Cooperation and Control, PRESTO, JST
Bibliografia
  • [1] Schroeder W. J., Zarge J. A., Lorenson W. E.: Decimation of triangle meshes. Computer Graphics (Proc. SIGGRAPH’92), 26 (2), 65-70, 1992.
  • [2] Bajaj C. L., Schikore D. R.: Error bounded reduction of triangle meshes with multivariate data. SPIE, 2656, 34-45, 1996.
  • [3] Cohen J., Varshney A., Manocha D., Turk G., Weber H., Agarwal P., Brooks F., Wright W.: Simplification envelopes. Proc. SIGGRAPH ’96, 119-128, 1996.
  • [4] Hoppe H.: Progressive meshes. Proc. SIGGRAPH’96, August, 99-108, 1996.
  • [5] Algori M., E., Schmitt F.: Mesh simplification. Computer Graphics Forum (Proc. Eurographics’96), 15 (3), August, 1996.
  • [6] Ronfard R., Rossignac J.: Full range approximation of triangular polyhedra. Computer Graphics Forum (Proc. Eurographics’96), 15 (3), 1996.
  • [7] Ciampalini A., Cignoni P., Montani C., Scopigno R.: Multiresolution decimation based on global error. The Visual Computer, 13, 228-246, 1997.
  • [8] Garland M., Heckbert P. S.: Surface simplification using quadric error metric. Proc. SIGGRAPH’97, August, 209-216, 1997.
  • [9] Gieng T. S., Hamann B., Joy K. I., Schlussmann G. L., Trotts I. J.: Smooth hierarchical surface triangulations. Proc. IEEE Visualization’97, 379-386, 1997.
  • [10] Heckbert P., Garland M.: Survey of surface simplification algorithms. Technical report, Carnegie Mellon University-Dept. of Computer Science, 1997.
  • [11] Luebke D.: A survey of polygonal simplification algorithms. Technical Report TR 97-045, Department of Computer Science, University of North Carolina, 1997.
  • [12] Cignoni P., Rocchini C., Scopigno R.: Metro: measuring error on simplified surfaces. Computer Graphics Forum, 17 (2), 167-174, June, 1998.
  • [13] Cignoni P., Montani C., Scopigno R.: A comparison of mesh simplification algorithms. Computer & Graphics, 22 (1), 37-54, 1998.
  • [14] Kobbelt L., Campagna S., Vorsatz J., Seidel H. P.: Interactive multi-resolution modeling on arbitrary meshes. Proc. SIGGRAPH’98, 105-114, 1998.
  • [15] Kobbelt L., Campagna S., Seidel H. P.: A general framework for mesh decimation. Proc. Graphics Interface’98, 311-318, October, 1998.
  • [16] Lindstrom P., Turk G.: Fast and memory efficient polygonal simplification. Proc. IEEE Visualization'98, 279-286, 544 Oct., 1998
  • [17] Veron P., Leon J. C.: Shape preserving polyhedral simplification with bounded error. Computers & Graphics, 22 (5), 565-585, 1998.
  • [18] Heckbert P., Garland M.: Optimal triangulation and quadric-based surface simplification. Journal of Computational Geometry: Theory and Applications, 14 (1-3), November, 49-65, 1999.
  • [19] Brodsky D., Watson B.: Model simplification through refinement. Proc. Graphics Interface’00, 221-228, 2000.
  • [20] Kim S. J., Kim C. H., Levin D.: Surface simplification using a discrete curvature norm. Computers and Graphics, 26, 657-663, 2002.
  • [21] Roy M., Foufou S., Truchetet F.: Generic attribute deviation metric for assessing mesh simplification algorithm quality. Proc. IEEE Int. Conf. on Image Processing, September, Rochester, USA, 817-820, 2002. http://meshdev.sourceforge.net/.
  • [22] Wu J., Kobbelt L.: Fast mesh decimation by multiple-choice techniques. Proc. Vision, Modeling, and Visualization, Erlangen, Germany, November, 2002.
  • [23] Hussain M., Okada Y., Niijima K.: Fast, simple, feature-preserving and memory efficient simplification of triangle meshes. International Journal of Image and Graphics, 3 (4), 1-18, 2003.
  • [24] Hussain M., Okada Y., Niijima K.: LOD modeling of polygonal models based on multiple choice optimization. Proc. MMM04, IEEE CS Press, 203-210, 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0011-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.