Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The same object seen in two different images can be geometrically and photometrically transformed. In this paper, a method of interest point detection and matching is described for the same object in different images. One of the main considerations is the change in the object scale. In this method, a reference scale is assigned to a particular instance of the object, and the change of scale is represented by a relative scale. Then, Harris' relative scale method is used for interest point detection. This method is robust to linear geometric transformations. A heuristic method for threshold selection is also described for robustness to intensity changes in a cluttered environment with partial occlusions. The repeatability rate of interest points for this method is higher then that for the existing methods. For the matching process, a local invariant descriptor is computed in the relative scale for each of the detected interest points. A hashing technique is applied to find the matches efficiently. The matching method enables finding a good number of correct matches for different types of transformations in a cluttered environment and one with partial occlusions. The proposed single scale detection and matching method could be effectively used for many practical applications, where the relative scale of the object can be predicted in advance.
Czasopismo
Rocznik
Tom
Strony
259--283
Opis fizyczny
Bibliogr. 24 poz., il., wykr.
Twórcy
autor
- Center for Computational Intelligence, School of Computer Engineering, Nanyang Technological University, Singapore 639798
autor
- Center for Computational Intelligence, School of Computer Engineering, Nanyang Technological University, Singapore 639798
- SWPS, Warsaw, Poland
autor
- Center for Computational Intelligence, School of Computer Engineering, Nanyang Technological University, Singapore 639798
Bibliografia
- [1] Hu M.-K.: Pattern recognition by moment invariants. IRE Trans. Information Theory, IT-8, 1962.
- [2] Friedman J., Bentley J., Finkel R.: An algorithm for finding best matches in logarithmic expected time. ACM Trans. Mathematical Software, 3 (3), 209-226, 1977.
- [3] Maitra S.: Moment invariants. Proc. of IEEE, 67 (4). 697-699, 1979.
- [4] Witkin A. P.: Scale-space filtering. Proc. 8th Int. Joint Conf. on Artificial Intelligence, Karlsruhe, Germany, 1983.
- [5] Koenderink J. J.: The structure of images. Biological Cybernetics, 50. 363-396, 1984.
- [6] Abu-Mostafa Y. S., Psaltis D.: Image normalization by complex Moments. IEEE Trans. PAMI, 7 (6). 46-55, 1985.
- [7] Abo-Zaid A., Hinton O., Horne E.: About moment normalization and complex moment descriptors. Proc. 4th Int. Conf. on Pattern Recognition, 399-407, 1988.
- [8] Harris C., Stephens M.: A combined corner and edge detector. Proc. 4th Alvey Vision Conf., Manchester UK, 1988.
- [9] Teh C.-H., Chin R. T.: On image analysis by the method of moments. IEEE Trans. PAMI, 10 (4). 496-513, 1988.
- [10] Reiss T. H.: Recognizing planar objects using invariant image features. Springer-Verlag, 1993.
- [11] Lindeberg T.: Scale-space theory in computer vision. Kluwer Academic Publishers, 1994.
- [12] Nene S. A., Nayar S. K., Murase H.: Columbia Object Image Library (COIL-20). Technical Report CUCS-005-96, 1996.
- [13] Beis J. S., Lowe D. G.: Shape indexing using approximate nearest-neighbór search in high dimensional spaces. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 1000-1006, 1997.
- [14] Schmid C., Mohr R.: Local grey value invariants for image retrieval. IEEE Trans. PAMI, 19 (5). 530-535, 1997.
- [15] Selinger A., Nelson R. C.: A perceptual grouping hierarchy for appearance-based 3D object recognition. Computer Vision and Image Understanding, 76 (1). 83-92, 1999.
- [16] Schmid C., Mohr R., Bauckhage C.: Evaluation of interest point detectors. Int. J. Computer Vision, 37 (2). 151-172, 2000.
- [17] Kadir T., Brady M.: Saliency, scale and image description. Int. J. Computer Vision, 45 (2). 83-105, 2001.
- [18] Mikolajczyk K., Schmid C.: Indexing based on scale invariant interest points. Proc. Int. Conf. Computer Vision, 525-531, 2001.
- [19] Mikolajczyk K.: Detection of local features invariant to affine transformation, Ph.D . thesis, Institut National Polytechnique de Grenoble, 2002.
- [20] Jurie F., Schmid C.: Scale-invariant shape features for recognition of object categories. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, II-90 - II-96, 2004.
- [21] Lowe, D. G.: Distinctive image features from scale-invariant key points. Int. J. Computer Vision, 60 (2). 91-110, 2004.
- [22] Mikolajczyk K., Schmid C.: Scale & Affine Invariant Interest Point Detectors. Int. J. Computer Vision, 60 (1). 63-86, 2004.
- [23] Islam M. S., Sluzek A., Zhu L.: Towards invariant interest point detection of an object. Proc. 13th Int. Conf. in Central Europe on Computer Graphics, Visualization and Computer Vision, Czech Republic, 101-104, 2005.
- [24] Islam M. S., Sluzek A., Zhu L.: Representing and matching the local shape of an object. Proc. Mirage 2005 (Computer Vision / Computer Graphics Collaboration Techniques and Applications), France, 9-16, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0011-0015