Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The use of Dupin cyclides and supercyclides in CAGD applications has been the subject of many publications in the last decade. Dupin cyclides are low degree algebraic surfaces having both parametric and implicit representations. In this paper, we aim to give the necessary expansions to derive implicit equations of supercyclides in the affine as well as in the projective space, starting from equations of the Dupin cyclide and the transformation matrix. We introduce a particular subfamily of supercyclides, called elliptic supercyclides, and show how to use them for the blending of elliptic quadratic primitives. We also show how one can convert an elliptic supercyclide into a set of rational biquadratic Bézier patches.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
123--144
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
autor
- LE21, UMR CNRS 5158, UFR Sciences, 21078 Dijon Cedex, France
autor
- LE21, UMR CNRS 5158, UFR Sciences, 21078 Dijon Cedex, France
Bibliografia
- [1] Moutard Annales de Mathématiques. Bulletin de la société Philomatique et compterendu de l’Accadémie, 1804.
- [2] Dupin C. P.: Application de Géométrie et de Méchanique la Marine, aux Ponts et Chaussées, etc. Bachelier, Paris, 1822.
- [3] Darboux G.: Sur une Classe Remarquable de Courbes et de Surfaces Algébriques et sur la Théorie des Imaginaires. Gauthier-Villars, 1873.
- [4] Forsyth A. R.: Lecture on Differential Geometry of Curves and Surfaces. Cambridge University Press, 1912.
- [5] Darboux G.: Principle de géométrie analytique. Gauthier-Villars, 1917.
- [6] Martin R. R.: Principal patches for computational Geometry. PhD thesis, Engineering Department, Cambridge University, 1982.
- [7] Pinkall U.: Dupin hypersurfaces. Math. Ann., 270(3), 427-440, 1985.
- [8] Chandru V., Dutta D., Hoffmann C. M.: On the Geometry of Dupin cyclides. The Visual Computer, 5, 277-290, October, 1989.
- [9] Hoffmann C. M.: Geometric and Solid Modeling: An Introduction. Morgan Kaufmann, 1989.
- [10] Adams J. A., Rogers D. F.: Mathematical elements for Computer graphics. Mc Graw Hill International, 1990.
- [11] Boehm W.: On cyclides in geometric modeling. Computer Aided Geometric Design, 7(1-4), 243-255, June, 1990.
- [12] Chandru V., Dutta D., Hoffmann C. M.: Variable radius blending using Dupin cyclides. Preiss K., Turner J., Wozny M. (Eds.) Geometric Modeling for Product Engineering, pages 39-58, North Holland. Elseiver Science, 1990.
- [13] Pratt M. J.: Cyclides in Computer aided geometric design. Computer Aided Geometric Design, 7(1-4), 221-242, 1990.
- [14] Berger M., Gostiaux B.: Géométrie différentielle : variétés, courbes et surfaces. PUF, 2ème edition, april, 1992.
- [15] Zhou X., Strasser W.: A NURBS aproach to cyclides. Computers In Industry, 19(2), 165-174, 1992.
- [16] Dutta D., Martin R. R., Pratt M. J.: Cyclides in surface and solid Modeling. IEEE Computer Graphics and Applications, 13(1), 53-59, January, 1993.
- [17] Hoschek J., Lasser D.: Fundamentals of Computer Aided Geometric Design. A. K. Peters, Wellesley, Massachussets, 1993.
- [18] Degen W. L. F.: Generalized Cyclides for Use in CAGD. In A. Bowyer, editor, The Mathematics of Surfaces IV, 349-363, Oxford. Clarendon Press, 1994.
- [19] Johnstone J. K., Shene C. K.: Blending surfaces for cones. R. B. Fisher (Ed.) The Mathematics of Surfaces V, pages 3-29, Oxford. Clarendon Press, 1994.
- [20] Pratt M. J.: Dupin cyclides and supercyclides. InG. Mullineux, editor, Proc. Mathematics of Surfaces, 43-66. Oxford University Press, 1994.
- [21] Srinivas Y. L., Dutta D.: Rational parametric representation of the parabolic cyclide: Formulation and applications. Computer Aided Geometric Design, 12(6), 551-566, 1995.
- [22] Albrecht G., Degen W.: Construction of Bézier rectangles and triangles on the symétric Dupin horn cyclide by means of inversion. Computer Aided Geometric Design, 14(4), 349-375, 1996.
- [23] Srinivas Y. L., Vinod Kumar K. P., Debasish Dutta: Surface design using cyclide patches. Computer-aided Design, 28(4), 263-276, 1996.
- [24] Allen S., Dutta D.: Cyclides in pure blending I. Computer Aided Geometric Design, 14(1), 51-75. ISSN 0167-8396, 1997.
- [25] Farin G.: Curves and Surfaces for Computer Aided Geometric Design. Academic Press, San Diego, 4 edition, 1997.
- [26] Pratt M. J.: Quartic supercyclides I: Basic theory. Computer Aided Geometric Design, 14(7), 671-692, 1997.
- [27] Shene C. K.: Blending with affine and projective Dupin cyclides. Computer Aided Geometric Design, 5 (1-2), 121-152, 1997.
- [28] Degen W. L. F.: On the origin of supercyclides. Robert Cripps (Ed.) Proceedings Mathematics of Surfaces, 297-312, Winchester, UK. Information Geometers, 1998.
- [29] Paluszny M., Boehm W.: General cyclides. Computer Aided Geometric Design, 15(7), 699-710, 1998.
- [30] Shene C. K.: Blending two cones with Dupin cyclides. Computer Aided Geometric Design, 15(7), 643-673, 1998.
- [31] Shene C. K.: Do blending and offsetting commute for Dupin cyclides. Computer Aided Geometric Design, 17(9), 891-910, 2000.
- [32] Ueda K.: Blending between right circular cylinders with parabolic cyclides. Ralph Martin, Wenping Wang (Eds.): Proc. of the Conference on Geometric and Processing (GMP-00), 390-397, Los Alamitos, April 10-12. IEEE, 2000.
- [33] Pratt M. J.: Quartic supercyclides for geometric design. U. Cugini, Wozny M. J. (Eds.) From Geometric Modeling to Shape Modeling, pages 191-208. Kluwer Academic Publishers, 2001.
- [34] Garnier L., Foufou S., Neveu M.: Jointure G¹-continue entre un cône et une sphère. Revue Internationale de CFAO et d’informatique graphique, 17(3-4), 297-312, 2003.
- [35] Garnier L.: Utilisation des cyclides de Dupin quartiques et des supercyclides quartiques en modélisation géométrique. PhD thesis, Le2i, Université de Bourgogne, 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0011-0008