PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adaptive real-time segmentation in traffic scenes

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Segmantation is a critical elemeny in any computer vision traffic monitoring system. In this paper a segmentation approach is presented with the aim obtain accurate, compact movement masks suitable for a subsequent tracking stage. Two different segmentation methods using bachground subtraction techniques for day and night operation are presented. The methods are designed for all weather, hard real-time operation in outdoor highway multilane scenes observed by a fixed camera. The kay elements presented are: a convenient non-linear image sub-sampling and rectification technique, an adaptive background model estimation and a dynamic adaptation of segmentation parameters.
Rocznik
Strony
39--52
Opis fizyczny
Bibliogr. 17 poz., il., tab., wykr.
Twórcy
autor
  • Universidad National de Educacion a Distancia, UNED. ETSI Informatica. Madrit. Spain
Bibliografia
  • [1] Faugeras O., Three Dimensional Computer Vision, MIT Press, 1993.
  • [2] Koeller D., Other: Towards robust automatic traffic scene analysis in real-time. Proc. of Int. Conf. on Pattern Recognition, Israel, 1994.
  • [3] Ridder C., Munkelt O., Kirchner H.: Adaptive background estimation and foreground detection using kalman-filtering. Proc. ICRAM 95193-195, UNESCO, 1995.
  • [4] Xu G., Zhang Z.: Epipolar Geometry in Stereo, Motion and Object Recognition, Kluwer Academic Pub, Chap. 3, 1996.
  • [5] Stauder D., Mech R., Ostermann J.: Detection of moving cast shadows for object segmentation. IEEE Trans. on Multimedia, 1, 65-76, 1999.
  • [6] Horprasert T., Harwood D., Davis L., A statistical approach for real-time robust background subtraction and shadow detection. Proc. of IEEE ICCV99 FRAME-RATE Workshop, 1999.
  • [7] Stauffer C., Grimson W.: Adaptive background mixture models for real-time tracking. Proc. IEEE Computer, 2, 1999.
  • [8] Mikic I., Cosman P., Kogut G., Trivedi M.: Moving shadow and object detection in traffic scenes. Proc. of Int. Conf. on Patter Recognition, 2000.
  • [9] Lo B., Velastin S.: Automatic congestion detection system for underground platforms. Proc. of the Int. Symp. on Intelligent Multimedia, 158161, 2000.
  • [10] Seki M., Fujiwara H., Sumi K.: A robust background subtraction method for changing background. Proc. of IEEE Workshop on Applications of Computer Vision, 207213, 2000.
  • [11] Cucchiara R., Grana C., Piccardi M.a, Prati A.: Statistical and knowledge based moving object detection in traffic scenes. Proc. of IEEE Int. Conf. on Intelligent Transportation Systems, 27-32, 2000.
  • [12] Zhu Z., Xu G., Yang B., Shi D., Lin X.: Visatram, a real-time vision system for automatic traffic monitoring. Image and Vision Computing Journal, 18(10), 781-794, 2000.
  • [13] Prati A., Mikic I., Grana C., Triveni M.: Shadow detection algorithms for traffic flow analysis: a comparative study. Proc. IEEE Int. Conf. on Intel. Transport. System., 304-345, 2001.
  • [14] Cucchiara R., Grana C., Piccardi M., Prati A.: Improved shadow suppression in moving object detection with hsv color information. Proc. of ITSC, 2001.
  • [15] Boult T., Micheals R., Gao X., Eckmann M.: Into the woods: visual surveillance of noncooperative and camouflaged tragets in complex outdoor settings. Proc. of the IEEE, 89, 13821402, 2001.
  • [16] Ohta N.: A statistical approach to background suppression for surveillance systems. Proc. of IEEE Int. Conf. on CV, 481486, 2001.
  • [17] Cucchiara R., Grana C., Piccardi M., Prati A.: Detecting moving objects, ghosts and shadows in video streams, IEEE Trans. on PAMI, 25(10), 1337-1342, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0006-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.