Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Design for a low noise of multichannel integrated circuits on example of RX64 chip
Języki publikacji
Abstrakty
W artykule przedstawiono metrologię projektowania wielokanałowych specjalizowanych układów scalonych w technologii CMOS, ze zwróceniem szczególnej uwagi na optymalizację szumową stopni wejściowych i minimalizację przesłuchów w układach analogowo-cyfrowych. Szczegółową analizę sposobu projektowania przeprowadzono w oparciu o 64-kanałowy układ scalony RX64 do odczytu paskowych detektorów krzemowych używanych do detekcji niskoenergetycznego promieniowania X.
This paper describes designing of multichannel mixed-mode Application Specific Integrated Circuits in CMOS technology. The author discusses the problems of noise optimisation and crosstalk in mixed-mode integrated circuit on example of 64-channel chip RX64. This chip has been designed for the digital readout of silicon strip detectors used for position-sensitive X-ray imaging. Various requirements and constraints implied by this particular application have been taken into account in the design stage. The XR64 chip consists of low noise analogue front-end electronic and digital blocks for data storage, bias control and communication via serial link. An architecture of integrated circuit has been described with a special attention paid to noise optimisation. A method of noise minimisation of front-end electronic has been developed taking into account capacitance of X-ray sensor and different value of bias current in the input transistor of charge preamplifier. The second order effects in noise calculation have also been investigated. The minimisation of crosstalk in mixed-mode RX64 chip has been considered. As the chip contains analogue and digital blocks placed on common epi-type substrate, particular attention has been paid to the layout. The floorplan, power distribution and guardring placement are described. The results of the design are verifield by noise measurements using internal calibration generator, radioactive source with X-ray sensor and considering the noise counts according to the Rice formula. The equivalent input noise measured at room temperature for a sensor capacitance of 2.5 pF and peaking time of 0.8 us is only 145 el. rms.
Wydawca
Czasopismo
Rocznik
Tom
Strony
441--470
Opis fizyczny
Bibliogr. 30 poz., rys., wykr.
Twórcy
autor
- Wydział Fizyki i Techniki Jądrowej, AGH, al. Mickiewicza 30, 30-059 Kraków, grybos@ftj. agh.edu.pl
Bibliografia
- 1. P. M. Solomon (ed): Scaling CMOS to the limit. IBM Journal of Research and Development, vol. 46, no. 2/3, 2002.
- 2. B. Hilt, P. Fessler, G. Prevot: New quantum detection system for very low dose X-ray radiology. Nuclear Instruments and Methods, vol. A442. 2000, pp. 38-44.
- 3. E. Beuville, et al.: An application specific integrated circuit and data acquisition system for digital X-ray imaging. Nuclear Instruments and Methods, vol. A406. 1998, pp. 337-342.
- 4. P. Gryboś: Low Noise Multichannel Integrated Circuits in CMOS Technology for Physics and Biology Applications. Monografie 117, AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne. Kraków, 2002.
- 5. W. Dąbrowski, P. Gryboś. K. Świentek. P. Wiącek: Integrated readout of silicon strip detectors for position sensitive measurement of X-rays. Nuclear Instruments and Methods, vol. 512. 2003, pp. 213-219.
- 6. G. Baldazzi, et al.: X-ray imaging with a silicon microstrip detector coupled to the RX64 ASIC Nuclear Instruments and Methods, vol. A509, 2003, pp. 315-320.
- 7. P. Ratio Mendes, et al.: Silicon strip detectors for two-dimensional soft X-ray imaging at normal incidence Nuclear Instruments and Methods, vol. A509, 2003, pp. 333-339.
- 8. M. Feuerstack-Raible: Overview of microstrip readout chips Nuclear Instruments and Methods, vol. A447, 2000, pp. 35-43.
- 9. G. Hall: LHC front-end electronics. Nuclear Instruments and Methods, vol. A453, 2000, pp. 353-364.
- 10. P. Gryboś, W. Dąbrowski, P. Hottowy: NEURO64 - design for a good matching performance in multichannel ASIC. Proceedings of the 16th European Conference on Circuit Theory and Design ECCTD'2003 Kraków, Poland, September 2003, vol. 2, pp. 1-4.
- 11. P. Gryboś. W. Dąbrowski, T. Fiutowski, K. Słowikowski: Design for low noise and good matching in multichannel amplifier for recording neuronal signals in modern neuroscience experiments. Proceedings of 9th International Conference on Mixed Design of Integrated Circuits and Systems - MIXDES'2002 Wrocław, Poland, June 2002, pp. 255-260.
- 12. K. Korbel: Układy elektroniki front-end. AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne, Kraków 2000.
- 13. E. Gatti, P. F. Manfredi: Processing the signal from solid-state detectors in elementary particle physics. La Revista del Nuovo Cimento, vol. 9, no. 1, 1986.
- 14. W. Sansen, Z. Y. Chang: Limits of low noise performance of detector readout front ends in CMOS technology. IEEE Transactions on Circuits and Systems, vol. 37, no. 11, 1990, pp. 1375-1382.
- 15. Y. Tsividis: Operation and modeling of the MOS Transistor: New York, WCB McGraw-Hill. 1999.
- 16. E. Nygard, et al.: CMOS low noise amplifier for microstrip readout. Design and results. Nuclear Instruments and Methods, vol. A301, 1991, pp. 506-516.
- 17. D. Foty: Modernizing the framework for deep submicron design - for CMOS and beyond. Proceedings of 10th International Conference on Mixed Design or Integrated Circuits and Systems MlXDES'2003 Łódź , Poland, June 2003, pp. 19-24.
- 18. C. Enz, F. Krummenacher, E. A. Vittoz: An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current application. Analog Integrated Circuits and Signal Processing. vol. 8, 1995, pp. 83-114.
- 19. BSIM3v3 manual. Department of Electrical Engineering and Computcr Scicnces, University of California Berkeley, CA 94720, 1996.
- 20. M. Raymond, et al.: Radiation hard electronics for LHC. Nuclear Instruments and Methods, vol. A360, 1995, pp. 162-165.
- 21. M. Manghisoni, et al.: Submicron CMOS technlogies for low-noise analog front-end circuits. IEEE Transactions on Nuclear Science. vol. 49, no. 4, 2002, pp. 1783-1790.
- 22. J. S. Lovett, M. Welten, A. Mathewson, B. Mason: Optimizing MOS transistor mismatch. IEEE Journal of Solid-State Circuits, vol. SC-33, no 1, 1998 , pp. 47-150.
- 23. V, Re, et al.: Experimental study and modeling of the white noise sources in submicron P-and N-MOSFETs. IEEE Transactions on Nuclear Science, vol. 48, no. 4 , 2001, pp. 1577-1586.
- 24. P. Gryboś, W. Dąbrowski, P. Hottowy, R. Szczygieł, K. Świentek, P. Wiącek: Multichannel mixed-mode IC for digital readout of silicon strip detectors. Microelectronics Reliability, vol. 42, 2002, pp. 427-436.
- 25. IEEE Std 1596.3-1996, IEEE Standard for Low-Voltage Differential signals (LVDS) for Scalable Coherent Interface (SCI).
- 26. P. Gryboś, W. Dąbrowski: Dewelopment of a fully integrated readout system for high count rate position-sensitive measurements of X-rays using silicon strip detectors. IEEE Transactions on Nuclear Science, vol. 48, no. 3, 200l. pp. 466-472.
- 27. W. Dąbrowski, P. Gryboś: Position sensitive semiconductor strip detectors., [in:] K.·Tsuji, J. Injuk, R. Van Grieken (eds), X-ray Spectrometry: Recent Technological Advances. John Wiley & Sons, Ltd, 2004. pp. 247-275, to be printed.
- 28. S. O. Rice: Mathematical analysis of random noise. Bell System Tech. J., 24, 1945.
- 29. M. Heijningen, et al.: Analysis and experimental verification of digital substrate noise generation for epi-type substrates. IEEE Journal of Solid-State Circuits. vol. SC-35, no. 7, 2000, pp. 1002-1008.
- 30. T. Schmerbeck: Noise coupling in mixed-mode ICs: Mechanism/Simulation/Measurement, Design Strategy/H W Example. Lausanne, Switzerland, EPFL Electronics Laboratories Advanced Engineering Course CMOS & BiCMOS IC Design '99: Practical Aspects in Analog and Mix-Mode ICs 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0005-0152