Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
German-Polish Workshop on Dynamical Problems in Mechanical Systems (8 ; 31.08-5.09.2003 ; Schmochtitz, Germany)
Języki publikacji
Abstrakty
We present how to avoid dangerous situations that occur during a robot periodic motion and are caused by different kinds of vibrations. Theoretical analysis of stability regions of nonlinear and linearized system and of the ways of inducing vibrations during a stability loss of periodic trajectories is developed. For practical control of motion a common part of areas of stability received for nonlinear and using linearized Poincare map can be taking into considerations. The areas of stability are identificated by the bifurcation diagrams and Poincare maps. Stability regions of periodic trajectories as a function of varying parameters of the system are investigated . As a practical tool for the control of stability, a spectrum of Lyapunov exponents is proposed. To illustrate our method theoretically and numerically, a model of the RRP-type manipulator has been considered.
Czasopismo
Rocznik
Tom
Strony
65--85
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
autor
- Technical University of Lodz
autor
- Technical University of Lodz, Division of Dynamics
Bibliografia
- 1. Anishchenko, B.C., 1990, Sloznye Kolebanija w Prostych Sistemach, Science, Moscow.
- 2. Asada, H., Slotine, J., 1986, Robot analysis and control, J. Wiley and Sons, New York.
- 3. Bishop, S.R., Kapitaniak, T., 1999, The Illustrated Dictionary of Nonlinear Dynamics and Chaos, J. Wiley, Chichester.
- 4. Dawson, D.M., Bridges, M.M., Qu Z., 1995, Nonlinear control of robotic systems for environmental waste and restoration, Prentice-Hall, New York.
- 5. Drazin, P., 1992, Nonlinear Systems, Cambridge University Press, Cambridge.
- 6. Glendinning, P., 1995, Stability, Instability and Chaos, Cambridge University Press, Cambridge.
- 7. Inman, D.J., 1989, Vibration, with control, measurement and stability, Prentice Hall, New Jersey.
- 8. Kaczmarek, T., 1998, Electric drive of robots, Scientific Publishers of University of Poznan, Poland.
- 9. Kapitaniak, T., 1991, Chaotic oscillations in mechanical systems, World Science, Manchester University Press.
- 10. Kapitaniak, T., Wojewoda, J., 2000, Bifurcations and Chaos, State Scientific Publishers, Warsaw-Lodz, Poland.
- 11. Kozlowski, K., 1995, Modelling the dynamics of geared manipulators, in Proceedings of I Conference for Matlab Users, Krakow, Poland.
- 12. Lakshmikantham, V., Leela, S., Martynyuk, A.A., 1990, Practical Stability of Nonlinear Systems, World Science, Singapore.
- 13. Lerusse, A., Cardona, A., Geradin, M., 1996, Multi-harmonic balance and Floquet methods applied to nonlinear structures, in Proceedings of Eurometh-2nd European Nonlinear Oscillation Conference., Prague, Czech Republic.
- 14. Lin, L.Ch., 1995, Rigid model-based fuzzy control of flexible joint manipulators, Journal of Intelligent and Robotic Systems, 13, 107-126.
- 15. Sinha, S.C., Joseph, P., 1994, Control of general dynamic systems with periodically varying parameters via Lyapunov-Floquet transformation, ASME Journal of Dynamical Systems, Measurement, and Control, 116, 650-658.
- 16. Sinha, S.C., 1996, Stability of periodic motions of nonlinear dynamical systems under some simple critical conditions, in Proceedings of Eurometh-2nd European Nonlinear Oscillation Conference, Prague, Czech Republic.
- 17. Spong, M., Vidyasagar, M., 1989, Robot dynamics and control, J. Wiley and Sons, New York.
- 18. Streit. D.A., Krousgrill. C.M., Bajaj. A.K., 1986, A preliminary investigation of the dynamic stability of flexible manipulators performing repetitive tasks, ASME Journal of Dynamical Systems, Measurement, and Control, 108, 206-214.
- 19. Szumiński. P., Kapitaniak. T., 1998, Analysis of resisting torques of rolling kinematic pairs of robots, in Proceedings of International Symposium on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, 951-956.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA1-0005-0135